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Abstract— The determination of the relative position and pose
of every robot in a modular robotic ensemble is a necessary
preliminary step for most modular robotic tasks. Localization
is particularly important when the modules make local noisy
observations and are not significantly constrained by inter-
robot latches. In this paper, we propose a robust hierarchical
approach to the internal localization problem that uses normal-
ized cut to identify subproblems with small localization error.
A key component of our algorithm is a simple method to reduce
the cost of normalized cut computations. The result is a robust
algorithm that scales to large, non-homogeneous ensembles. We
evaluate our algorithm in simulation on ensembles of up to
10,000 modules.

I. INTRODUCTION

A key challenge in scaling to very large modular robotic
ensembles is internal localization, the establishment of rela-
tive pose amongst the robot’s many individual components.
In systems such as Claytronics [1], internal localization must
be performed on ensembles consisting of many thousands
to millions of tiny modules, using only local sensing in-
formation between neighboring modules. The scale of the
system, the unconstrained manner in which spheres can pack
together, and uncertain intermodule sensing make developing
a robust and scalable algorithm for internal localization a
significant challenge.

Existing work on internal localization falls into two gen-
eral categories. Constraint-based approaches [2], [3], [4]
rely on strong assumptions about the ensemble structure or
exact observations to scale up to large ensembles. Typically,
these approaches resolve uncertainty locally, by using exact
observations and geometric constraints and then propagate
the solution to the rest of the ensemble. While scalable, they
are neither robust to noise nor irregular, non-lattice structure.
Local probabilistic approaches [5], employed in systems such
as PolyBot [6], address the robustness aspects of the internal
localization problem. By combining a forward kinematic
model with local sensing, these approaches can eliminate
as much as 90% of the positioning error. The positioning
error can be further reduced using the system’s mechanical
latching.

While local probabilistic approaches work very well at a
small scale, they tend to quickly accumulate error as the
size of the ensemble increases, especially in the absence
of mechanical latching. In order to obtain accurate position
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Fig. 1. Comparison of a naive incremental approach and the proposed
method. The total number of iterations is the same in both solutions.
(a) Intermediate incremental solution before the loop closure. (b) Final
solution, obtained by the incremental approach. (c) Solution, obtained with
the proposed approach.

estimates, a scalable solution must combine observations
from several modules and obtain the most probable position
globally; thus, we use a global probabilistic approach to
internal localization.

Global probabilistic localization is a challenging goal: the
dense, mesh-like structure makes it difficult to apply sparse
graph approaches, such as junction tree thinning [7], and
tight local constraints slow down the convergence of iterative
solutions, such as generalized belief propagation [8]. A
simple, but effective approach is to compute the most likely
positions for progressively larger sets of modules, for exam-
ple, by incrementally adding modules and their observations
in a breadth-first manner from a given anchor node. Similar
strategies have been used to speed up Euclidean embedding
approaches in wireless sensor network localization [9].

Despite the fact that the global probabilistic inference
incorporates multiple observations per node, a naive im-
plementation will still accumulate error when the ensemble
is not homogeneous. For example, if the ensemble has a
region with only a few inter-module observations (which we
call a weak region), substantial rotational uncertainty will
be introduced in the partial solution, and will be magnified
by subsequent additions. However, if we incorporate the
observations in the densely connected regions first, then the
partial solution will be constrained and the error will be
substantially reduced. We use this intuition to formulate a
hierarchical algorithm, where we recursively split the ensem-
ble connectivity graph into well-connected components along
weak boundaries. We formulate the splitting procedure as a
normalized cut problem [10] which minimizes the number
of connections between components, while maximizing the
connectivity within each component. Unfortunately, finding
the exact normalized cut in a large graph is computationally
expensive. We address this issue by computing normalized
cut on an abstraction of the connectivity graph of the



ensemble. This abstraction preserves the high-level informa-
tion about the connectivity of the graph and substantially
decreases the computational complexity of the approach,
with only a negligible decrease in accuracy.

We evaluate out algorithm on realistic 2D problems with
up to 10,000 modules that accurately model unreliable ob-
servations and physical interactions among the modules. We
show that the computational complexity of the approach
is nearly linear in the size of the ensemble for a fixed
ensemble structure. In our experiments, the proposed ap-
proach outperforms methods from wireless sensor network
localization based on classical multidimensional scaling [11]
and semidefinite programming (SDP) relaxations [12], [13],
as well as simpler incremental heuristics. These results
suggest that dense structures in internal localization may
impose strong geometric constraints that are perhaps more
effectively approximated with a single vector of most likely
positions than the hop-count and SDP relaxations in Eu-
clidean embedding methods.

II. LOCALIZATION OF MODULAR ENSEMBLES

We assume that the location of each module can be
described by a small number of parameters, such as the
coordinates of its center and orientation in space. In this
paper, we focus primarily on circular and spherical modules
in 2D and 3D space, respectively. Each module is equipped
with sensors, such as infrared transmitters/receivers, that
allow a pair of modules to detect when they are in close
proximity. Such observations are inherently uncertain: two
modules may be in sensing range, but not in physical
contact, or a measurement can be made when sensors are
not aligned. We do, however, assume that (i) the observations
are symmetric (that is, whenever module i observes module j
then module j also observes module i), and (ii) the modules
know the identity of modules they sense (that is, we do not
need to address the data association problem).

The problem considered in this paper is motivated by lo-
calization in Claytronics [1]. Claytronics envisions very large
ensembles of small modules, named catoms, which coopera-
tively form material that can change its shape under software
control. Figure 2(a) shows a current working prototype of the
sensing subsystems from two modules. Each module has 8
IR transmitters and 16 IR receivers, spaced evenly around
the module, oriented radially outwards. Multipath interfer-
ence, scattering, shadowing, and small dimensions preclude
techniques such as acoustic or radio time-of-flight-based
localization. Also, due to the lack of mechanical latching,
modules cannot rely on strong mechanical constraints for
accurate alignment and orientation.

III. LOCALIZATION AS PROBABILISTIC
INFERENCE

In this section we define the probabilistic model that
underlies our algorithm. In order to represent the uncertainty
of a set of module locations, we use a probabilistic model
that describes the probability of a joint assignment of module
locations X = (X1, . . . , XN ), given observations Z made by

(a) module prototypes (b) sensor model

Fig. 2. (a) Sensor board from module prototype. (b) Sensor model, used in
the paper. Each observation zi,j is represented as the location of the sensor,
projected to the perimeter of the module. The circle indicates the midpoint
of the two modules centers. The model penalizes the module locations xi

and xj , based on the distance between the midpoint and the observations
zi,j and zj,i.

all modules in the ensemble. The location of each module i
is represented by a vector, Xi , (Ci, Ri), where Ci is the
center of the module and Ri is its orientation (represented
either as an angle θi in two dimensions, or a quaternion in
three dimensions). We assume a uniform prior distribution
on module position and orientation. This model does not
explicitly represent the constraint that the modules must not
overlap; instead, we have chosen to rely on the observations
to obtain a non-overlapping solution.

When two modules i and j are in the immediate neigh-
borhood of each other, a pair of observations (zi,j , zj,i) is
generated which represent the sensors at module i and j,
respectively, that made the observation. We use a discrete
model that captures whether two modules observe each other
(and with which sensors) but not the intensity of the readings
(the methods presented in this paper generalize to more
accurate models). Also, for simplicity of notation, we assume
that there is at most one pair of observations for every
pair of modules, and we take zi,j to be the location of the
sensor at module i, in module i’s local reference frame (see
Figure 2(b)). The probability of making an observation zi,j

depends on the relative locations and orientations of modules
i and j, and is highest when the sensors are roughly aligned
and the modules centers ci and cj are a unit distance apart.
These properties are captured in a model that penalizes the
observation zi,j , based on how well they predict the midpoint
of the two module centers.

p(zi,j |xi, xj) ∝ exp

{
−1

2

∥∥∥∥Rizi,j −
cj − ci

2

∥∥∥∥2

2

}
(1)

Alternatively, we could use a more accurate model that
captures properties of IR transmitters and receivers, such as
quadratic decay and multi-modal response.

Equation 1 is the conditional density that defines an obser-
vation model that specifies, given a pair of module locations
xi, xj , how likely the nodes are to make the observations zi,j

(and zj,i). Combining the observation model (1) for each pair
of neighboring modules i, j and instantiating the observations
zi,j gives the likelihood of the joint state x:

p(z|x) =
∏
i,j

p(zi,j |xi, xj). (2)

For internal localization, we wish to compute the maximum
likelihood estimate (MLE) of the location of all the modules,
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Fig. 3. (a) Ensemble, consisting of two tightly connected clusters. The
clusters are connected by two pairs of observations. (b) Intermediate result,
obtained when incrementally conditioning on observations, starting from
the lower left corner. The numbers indicate the order of conditioning. The
solution accumulates substantial error; this error takes several iterations to
resolve with conjugate gradient descent, as shown in (c).

given all observations z:

x∗ = argmax
x

p(z|x), (3)

up to some global translation and rotation.

IV. OPTIMIZED ORDERING OF OBSERVATIONS

It is not easy to maximize the likelihood (2) directly, since
the likelihood function is non-convex and high-dimensional.
One approach is to compute the solution (3) incrementally,
that is, compute the maximum likelihood estimate

x∗A = arg max p(zA|xA) = arg max
∏

i,j∈A

p(zi,j |xi, xj)

for progressively larger sets of modules A. Here, xA denotes
the locations of the modules in A and zA denotes all
observations among the modules in A. At each step, we use
the current estimate x∗A to initialize the module locations for
the next set of modules around the perimeter of A. A similar
approach has been employed in wireless sensor network lo-
calization [9] and is analogous to Simultaneous Localization
and Mapping (SLAM), where observations among modules
(landmarks) are made over time.

Figure 3 illustrates the behavior of the incremental ap-
proach on a small ensemble with 200 modules that consists
of two dense components. Within each component, modules
make observations with all of their immediate neighbors,
whereas the two components share only two observations,
one at each side. Suppose that we incorporate observations
in breadth-first order, starting from the lower left corner. Fig-
ure 3(c) shows the running time of the algorithm at each step,
expressed as the number of iterations of conjugate gradient
descent until convergence. We see that while the number
of iterations is typically small, it increases dramatically
midway through the experiment when the observations close
a loop, formed by the two square components. Intuitively,
the computed solution accumulates error that takes a long
time to resolve once the algorithm closes the loop.

The experiment in Figure 3 points to an important draw-
back of the incremental approach. A simple maximum likeli-
hood estimate representation may not be accurate throughout
the execution of the algorithm: when the relative locations
of modules are uncertain, a single observation that closes

the loop may significantly shift the estimate. Nevertheless
if we first incorporate the observations within each dense
cluster and defer the observations that join the two clusters
until the very end, then the relative locations of modules
within each cluster would be certain, and we can combine
the two clusters in a single step, using rigid body alignment.
In short, the order in which observations are incorporated
has a substantial effect on performance of the incremental ap-
proach. The differences are even more pronounced for larger
ensembles with more complicated, non-uniform structure. It
is therefore desirable to seek orderings that minimize the
running time and the approximation error.

In large-scale localization, the main sources of uncertainty
are the weak regions of the ensemble, i.e., regions where
only a few observations are made. Weak regions can lead
to substantial rotational error. An effective heuristic is to
incorporate the observations among a subset of modules that
are tightly correlated, and defer the observations in the weak
regions until later. This heuristic can be naturally formulated
as a graph cut problem: starting from the connectivity graph
G of the complete ensemble (that is, a graph, whose edges
correspond to observations between modules), we seek to
partition G, such that each component is well-connected and
the inter-component observations are as few as possible. This
intuition is similar to normalized cut [10]:

Ncut(A,B) =
cut(A,B)

assoc(A, V )
+

cut(A,B)
assoc(B, V )

, (4)

where Ncut(A,B) is the cut value, cut(A,B) is the num-
ber of observations between module sets A and B, and
assoc(A, V ) is the number of observations between the
modules A and all other modules in the graph. Minimizing
(4) yields a partition of G into two components A,B.
Our heuristic will first incorporate observations within the
clusters A and B, and then the observations between A and
B.

Intuitively, normalized cut prefers partitions such that the
number of observations between A and B is small, compared
to all observations made by A and B. For example, in
Figure 3a, the vertical cut that separates the two well-
connected components has value Ncut = O( 1

N ), where N is
the number of modules, whereas the value of the horizontal
cut is Ncut = O( 1√

N
). Indeed, we see that normalized cut

discriminates these two orderings very well and yields the
correct ordering.

V. INTERNAL LOCALIZATION AS NORMALIZED
CUT

As suggested in the previous section, normalized cut
provides an intuitive heuristic for ordering conditioning oper-
ations: given a normalized cut of the connectivity graph G for
an ensemble, we first condition on observations within the
individual components and then condition on observations
across the cut. By applying this rule recursively, we obtain
an algorithm that hierarchically partitions the ensemble into
progressively smaller components which are then merged
bottom-up.



A key component of our algorithm is a method to reduce
the cost of normalized cut computations, as described in
Section V-B. As the size of the ensemble increases, the
algorithm becomes impractical, since the cost of comput-
ing normalized cut increases super-linearly with ensemble
size and quickly dominates other operations. We propose a
heuristic that speeds up the computation of the normalized
cut, by performing the computation on a smaller graph that
abstracts the structure of the original ensemble.

A. Summary of the algorithm

The proposed approached is summarized in Algorithm 1.
The algorithm starts by computing the normalized cut (A,B)
for the connectivity graph G. By applying the localization
procedure recursively, the algorithm computes the partial
solution for the modules A, conditioned on all observations
among A (in the algorithm description, GA denotes the
subgraph induced by A) and similarly for the modules B.
We then use the partial solutions x∗A and x∗B to initialize
the search for the optimum solution for the entire graph:
we transform the observations between A and B, zA,B ,
{zi,j : i ∈ A, j ∈ B}, into the global coordinate frame, using
the module locations given by the partial solution x∗A;
similarly for modules B. This procedure yields two sets of
points p = {pi} and q = {qi}, such that pi and qi are
locations of matching observations in the global coordinate
frame. Recall that the likelihood is maximal when sensors are
in close proximity; thus, an effective initialization is to hold
the relative locations of modules fixed within each cluster
A,B, and compute the optimal rigid body transform between
the clusters:

arg min
R∈SO(d),t∈Rd

∑
k

‖pk − (Rqk + t)‖2
2 , (5)

where R is the rotation matrix (in 2D or 3D) and t is the
translation vector. The optimal rigid body alignment (5) can
be computed with closed-form solution in time linear in
the number of observations between A and B [14]. This
procedure yields an initial estimate of the locations of all
modules, x0

V . The initial estimate is then refined using
iterative methods, such as conjugate gradient descent or a
quasi-Newton method.

B. Scaling up the solution

While the normalized cut formulation yields an effective
order to incorporate observations, computing the exact nor-
malized cut is too costly and dominates other operations.
Specifically, the cost of the rigid alignment is linear in the
number of observations and, as described in Section VI-
B, often yields accurate initialization that is quickly refined
with local methods. On the other hand, the complexity of
computing a single normalized cut is O(|V |3/2), where |V |
is the number of nodes in the graph [10], and the computation
is difficult to distribute. Nevertheless, in large-scale internal
localization, modules often form large clusters, and offsetting
the cut by a few nodes does not substantially decrease the
quality of the solution. This observation suggests that we may

Algorithm 1 NormCutLocalize(G, V )
1: Compute the normalized cut (A,B) = NormCut(G)
2: x∗A ⇐ NormCutLocalize(GA)
3: x∗B ⇐ NormCutLocalize(GB)
4: p ⇐ transform the observations zA,B into the coordinate

frame, given by x∗A.
5: q ⇐ transform the observations zB,A into the coordinate

frame, given by x∗B .
6: Compute the optimal rigid alignment R, t:

arg min
R∈SO(d),t∈Rd

∑
k

‖pk − (Rqk + t)‖2
2 ,

7: Let x0
V = (x∗A, Rx∗B + t).

8: x∗V ⇐ arg max log p(xV |zV ), starting from x0
V

be able to construct an abstraction of the original connectivity
graph G, whose best normalized cut is similar to that of G.1

Let G be the connectivity graph on which we wish
to perform normalized cut computations. Suppose that we
partition G into K components (V1, V2, . . . , VK), and create
an abstracted graph G′ with K vertices, such that two nodes
i and j in G′ are adjacent if and only if the corresponding
components Vi and Vj are adjacent in G. Furthermore,
suppose that the weight w′

i,j of an edge in G′ is equal to
the total number of edges between Vi and Vj in G. Then
any cut on G′ corresponds to a cut on G, with the same
cost Ncut. By performing a normalized cut on G′, we are
effectively restricting the solution to the cuts, induced by
the partition (V1, . . . , VK). Since the connectivity graphs in
modular robot ensembles are embedded in 2D or 3D space,
offsetting a cut increases its value at most linearly (in 3D,
quadratically) in the number of hops. Therefore performing
normalized cut on the abstracted graph G′ is often as good
as performing normalized cut on the original connectivity
graph.

In order to implement the above strategy, we greedily
partition the graph into a set of fixed components of a fixed
granularity (given by an approximate number of components
created by the partitioning procedure). At each level of the
hierarchy, we form a new abstracted graph G′ of the given
granularity. As described below, we obtain accurate solutions
with as few as twenty components.

VI. EXPERIMENTAL RESULTS

We implemented the centralized version of the proposed
algorithm in Matlab and generated input scenarios in a C++
simulator [15] that models IR sensing and physical interac-
tions between the modules. Each module in the simulation
has 12 IR transceivers (colocated emitter/detector pairs),
whose IR response follows an inverse-square law, similar
to the model in [5]. The threshold for detecting observations

1In other clustering applications, such as image segmentation, where the
affinity matrix is dense, it is often possible to subsampled the edges of
the graph at a minimal loss of quality. However, the connectivity graphs
in internal localization are already sparse, and we need to seek a different
approximation.



(a) solid (b) triple (c) open

Fig. 4. Scenarios used in our experiments. The scenarios were generated
by settling randomly inserted modules in a gravitational field.

between a pair of neighboring nodes was set to 20 per cent of
the peak intensity. At this setting, a sensor reports a positive
reading even if the modules are not in a physical contact and
if the transmitter and the receiver are not perfectly aligned.

A. Scenarios

For the experiments, we generated several simulated en-
semble configurations, illustrated in Figure 4 that mimic 2D
slices of a 3D shape capture scenario [2]. The configurations
were generated by placing the modules in a gravitational field
above a fixed container of the desired shape. The result are
configurations with realistic, irregular structures. Each shape
in Figure 4 was instantiated 10 times, with different initial
velocities and locations of the modules. These repeated runs
generated configurations that look similar, but whose module
connectivity and spacing varies.

B. Scalability

In the first experiment, we evaluated the performance
of the proposed method as the number of modules in an
ensemble increases. We selected the structured triple scenario
in Figure 4(b) and formed a set of progressively larger
ensembles. At each scale, the ensemble retains the same
shape and the proportions, but the number of modules that
form the shape increases. We then run Algorithm 1 such
that, at each level of the hierarchy, the estimate x∗A reaches
a fixed level of accuracy, as measured by the norm of the
gradient of the likelihood function at x∗A. This procedure
ensures that each estimate x∗A is sufficiently accurate, before
it is used at the higher level. Figure 5 shows the resulting
number of iterations of preconditioned conjugate gradient
descent per module, averaged over ten executions, for two
choices of the threshold on the gradient norm. We see that
the number of iterations, needed to attain the same accuracy,
increases only moderately with the size of the ensemble.
Note that the gradient threshold controls the fidelity of the
solution indirectly. With a threshold of 1.0, the average
location RMS error was 1.26; with a threshold of 0.1, the
average location RMS error was 0.80. As we decrease the
gradient threshold to 0, the solution attains the fidelity of the
maximum likelihood estimate (3).

C. Sensitivity to abstraction

In the second experiment, we evaluated the sensitivity of
the proposed localization method to errors, introduced by
performing normalized cut on the abstracted, rather than the
original connectivity graph. We took the structured scenario
in Figure 4(b) with 2000 modules. In order to keep the
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Fig. 5. The average number
of iterations per module for the
triple scenario as the number
of modules grows. At different
scales, the ensemble retains its
shape and the proportions.
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Fig. 7. RMS error of the location estimates. (a) Global RMS error, averaged
over all modules. (b) RMS error of modules relative to their neighbors. Here,
we greedily partition the ensemble into connected regions with diameter
of 6 modules or less and compute the RMS error using the optimal rigid
alignment for each region.

execution time constant, we perform a small fixed number
of iterations at the intermediate levels of hierarchy and 300
iterations of preconditioned conjugate gradient descent at
the top level. Figure 6 shows the root mean square (RMS)
error as we vary the number of nodes in the abstraction of
the connectivity graph (since we controlled the diameter of
clusters, rather than their count, the displayed number of
nodes is approximate). In order to account for the overlap,
introduced by the objective (1), we uniformly scale the
locations of the modules, so that the average spacing equals
the module diameter.2 Then, using the ground truth locations
of the modules, we compute an optimal rigid alignment
and report the error for the aligned solution. We see that
the performance of the proposed localization method is
insensitive to abstraction errors: with 20 or more nodes
in the abstracted graph, the approach yields a sufficiently
small RMS error (with smaller examples, the error was even
less pronounced). These results suggest that small graph
abstractions provide meaningful results and can be analyzed
at each leader node centrally.

2Similarly, we scaled the locations of the ground truth modules to account
for the overlap, introduced by the physics engine. If this scaling is not
desirable (e.g., because the modules can be compressed), we could use a
few externally calibrated anchors to minimize the distortion.



D. Comparative evaluation

In the third set of experiments, we compared the per-
formance of the proposed algorithm to Euclidean embed-
ding methods, used in wireless sensor network localization,
as well as simpler incremental and hierarchical heuristics.
We evaluated the following methods: (i) classical multi-
dimensional scaling [11], (ii) the inequality formulation of
regularized semidefinite programming [12], (iii) the simpler
incremental approach, discussed in Section IV, (iv) a simple
hierarchical approach that merges pairs of clusters bottom-
up, in the order given by their algebraic connectivity3, and
(v) the proposed method, using exact normalized cut. We
perform repeated experiments on the scenarios in Figure 4
with 1000 modules. The initial solution, obtained by each
method is refined with 300 iterations of preconditioned
conjugate gradient descent. In addition, for the last three
methods, we perform 10 steps of preconditioned gradient
descent at each iteration.

Figure 7 shows the average RMS error for each scenario.
We see that approaches, based on Euclidean embedding
(classical MDS, regularized SDP) generally do not perform
very well in this setting, especially for the sparse version
of the triple scenario and the large open-loop scenario. For
classical multi-dimensional scaling, the error results from
approximating true distances with hop-count; for regularized
SDP, the errors come either from the SDP relaxation or
the underlying solver. The incremental and simple hierar-
chical approaches perform better, but are outperformed by
our normalized cut formulation on the scenarios with non-
homogeneous structure (triple, sparse). It is worth noting
that the Euclidean embedding methods are substantially more
computationally expensive: an optimized implementation of
a state-of-the-art SDP relaxation method [13] takes 5-10
minutes to run on an input with 5000 nodes, whereas the
Matlab implementation of our hierarchical algorithm runs in
less than a minute.

VII. DISCUSSION AND FUTURE WORK

In this paper, we examine robust, large-scale localization
in modular robot ensembles from uncertain, local observa-
tions. We formulate internal localization as a probabilistic
inference problem and introduce a novel approach that
selects an effective ordering of observations, by computing
an approximate normalized cut on the connectivity graph
of the ensemble. We propose a method to approximate the
cut by performing normalized cut on a rough abstraction
of the connectivity graph. This approximation provides a
substantial speed-up with only a negligible loss of accuracy.
We perform an extensive evaluation of the proposed approach
on a test suite of realistic configurations with up to 10,000
nodes. We demonstrate that the method scales very well and
outperforms recent methods in Euclidean embedding as well
as simpler incremental heuristics.

3Algebraic connectivity is defined as the second smallest eigenvalue of
the Laplacian of the connectivity matrix; this value is zero if and only if
the graph is disconnected.

There are several directions to extend the work, presented
in this paper. A natural extension is to implement Algo-
rithm 1 on a distributed system with neighbor-to-neighbor
communication, using a combination of leader election and
data aggregation techniques. It would also be interesting to
exploit the geometric information, encoded in the connectiv-
ity graph. For example, the normalized cut is indifferent to
the spacing of the contact points along the cut. A heuristic
that is aware of the geometry encoded in the graph may
perform better for structures with large loops. Finally, it may
be possible to perform splitting and alignment operations on
several clusters at a time. This extension would address sce-
narios where several components are connected by relatively
few observations; incorporating all of these observations at
once can avoid introducing bias in the intermediate estimates.
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