
A Programming Model for Failure-Prone, Collaborative Robots

Nels Beckman Jonathan Aldrich
Institute for Software Research

Carnegie Mellon University
5000 Forbes Ave., Pittsburgh, PA 15213 USA
{nbeckman, jonathan.aldrich}@cs.cmu.edu

Abstract— A major problem in programming failure-prone
collaborative robots is liveness. How do we ensure that the fail-
ure of one robot does not cause other robots to be permanently
unavailable if, for example, that robot was a leader of others?
In this paper, we propose a general mechanism which could
be added to existing RPC libraries that allows applications to
detect failure and execute programmer-specified recovery code.

I. INTRODUCTION

A. Collaborative Robots

As robots become more sophisticated, writing applications
for them becomes a more daunting task. In this work our goal
is to ease the development of software for a particular class
of robotic systems; those in which large numbers of robots
must work collaboratively to accomplish some goal. (We
refer to these collections of robots working collaboratively as
robot “ensembles” or “systems.”) Our immediate inspiration
comes from the Claytronics project [2], which focuses on
the development of robots that work collaboratively to form
dynamic three-dimensional shapes. However, previous work
suggests [5], [11] that this is a growing domain with a variety
of potential applications.

The domain itself is characterized by a few distinctive
features. Because these are robots whose purpose is to effect
some result in the real world, sensor and actuator activity
is important. We focus, in particular, on robot ensembles
for which using actuators for purposes like movement or
change in form is the primary goal. Also there are soft real-
time constraints on the overall actions of the robots. While it
may not be important for any one robot to accomplish a task
in a specific time-frame, it is important that collaborative
tasks be completed in a reasonable amount of time, since
applications will be interacting with the real world. In this
domain applications will be massively distributed. Because
of the physical distribution of the robots and the overhead
associated with global communication, applications will have
to be designed to work in parallel using primarily local
communication. These types of applications have proven
quite difficult to develop in the past.

The final defining characteristic of this domain, and the
one we focus on in this work, is that the ensembles them-
selves are quite failure-prone. This is true for the following
reasons:

• For such large numbers of robots to be affordable, the
per-unit cost will have to be extremely small, removing

the feasibility of hardware error handling features.
• For the same reason, the rate of mechanical imperfec-

tion of these robots is likely to far exceed any currently
manufactured robot.

• Interaction between robot ensembles and the physical
world increases the likelihood of unexpected events
(e.g., encountering unexpected debris).

• The large number of robots taking part in an ensemble
at any given time, in combination with the above
factors will all but assure that some will fail over an
application’s execution.

Properly accounting for failure scenarios in applications is
notoriously hard. A large number of failures might possibly
occur, potentially affecting the application in many subtle
ways. Developing applications for this domain is already
extremely difficult, given the massively distributed nature
of the systems and the soft real-time constraints. So far,
few application developers have put in the effort to failure-
proof their applications. In this work we present a new
programming model which provides an abstraction making
failures easier to reason about. This abstraction is targeted
at failures that might cause otherwise working robots to
deadlock. It allows the programmer to easily express the
sections of code during which liveness concerns exist, and
which actions must be taken in order to preserve liveness.

B. Approach

For ease of presentation, we express our new model
as a programming language primitive, the fail block,
but it could also be implemented as a library. The
fail block lexically surrounds a section of code in which
transfers of control to other hosts in the ensemble occur.
Then, in the event of host failure during that section of
code, the underlying system helps the programmer to en-
sure liveness of the overall application by executing com-
pensating actions. Furthermore, a successful exit from the
fail block guarantees to the programmer that all actuator
commands have been successfully issued.

The paper proceeds as follows: Section II describes re-
lated work and explains why the goals of this paper have
not already been trivially met. Additionally, this section
describes our assumed failure model, some failure scenarios
we would like our system to be able to handle, and ML5,
the programming language upon which we build our work.



1 2 3
������������

- -

�
�
�
�

A
A

A
A

Fig. 1. After the thread of control has been transfered from Host 1 to Host
2 to Host 3, Host 2 fails.

2 3

1 k kkk• k•
4 5

6
-

2 3

1 k• k•
kk• k•

4 5

?-
��@@

Fig. 2. On the left, the thread of control passes through hosts 2 and 3,
setting Host 1 as their leader. Then, on the right, as the thread passes through
hosts 5 and 6, Host 1 fails. The dark circle represents Host 1 being set as
the leader of other hosts.

Section III describes our new model in detail and shows
examples of its use. Finally Section IV concludes.

II. BACKGROUND AND RELATED WORK

A. Specific Failure Scenarios

As a motivating example for our new programming model,
we will examine two specific failure scenarios. In Figure 1
we have three hosts who are communicating in order to
achieve some goal. In this scenario, Host 1 transfers the
thread of control to Host 2, which in turns transfers the thread
of control to Host 3. (We will frequently use the metaphor of
a thread migrating from host to host which is appropriate in
synchronous distributed paradigms like RPC. When Host 1
calls a function on Host 2, this can be thought of the thread
of control migrating from Host 1 to Host 2.)

Now, the question is, what should happen if Host 2
were to fail at this point in time? We would like for the
thread of control to return to Host 1, throw some kind
of exception indicating this failure, and allow computation
to continue from the point where control was transfered
to Host 2. However, using our thread migration metaphor,
it is not exactly clear how this transfer of control will
take place. In particular, if the system uses point-to-point
communication, the only known route from Host 3 back to
Host 1 has just failed and it is not clear that a new route can
easily be found. Note that traditional RPC systems simulate
thread migration by having Host 1 spontaneously resume the
thread’s execution in the event of a timeout.

In the second scenario, shown in Figure 2, we have a
larger group of hosts working together. In this scenario, we
are attempting to accomplish a goal which requires one host
to be the “leader” in some application-specific sense. Here,
that leader is Host 1. Host 1 transfers control to hosts 2 and
3, and assigns its own address to the memory location where
a host’s leader is stored. After returning control to Host 1,
control is passed to other hosts in the group. At this time
Host 1, the leader of the group, fails. In this scenario we can
not resume the thread of control, since the natural candidate,
Host 1, has failed. However, we do not want the failure of

Host 1 to prevent the other hosts from performing work.
This is possible in applications where hosts do not act until
commanded by a leader or distinguished host, as these hosts
would now wait indefinitely on a command that will never
arrive. Hosts 2 through 5 need to have their leader fields
reset.

B. Failure Model

In this work, we assume a relatively realistic failure model.
(Failure means the inability to perform any computation.) We
assume that hosts can fail at any point in time, and that they
can fail permanently, or fail and then return to working status
at a later point in time. It is also assumed that messages
may fail to be delivered or delayed indefinitely. Similarly,
any computation may take an unbounded amount of time.
We assume that the successful delivery of a command to a
hardware actuator can be confirmed or denied, but we realize
that the successful performance of the actuator’s command
may be difficult to verify. We do assume that there are no
malicious hosts in the system. Additionally, we assume that
there is no duplication of messages, or at least that a lower-
level protocol ensures duplicate messages are not delivered
to the application level.

C. Existing RPC Systems

We must point out that the goals of our new programming
model are not met trivially by existing work.

Remote Procedure Call (RPC) mechanisms are in wide
use, and many come with limited forms of failure detection.
However, currently available RPC libraries and more modern
distributed object libraries, such as Java RMI [13] and
CORBA [14], have weaker failure detection and weaker
failure recovery than the model that we propose. Most RPC
systems use a failure detection and recovery mechanism
consisting of timeouts and exceptions. When transferring
control across host boundaries, the application developer
typically specifies a timeout period, a length of time after
which the client will give up on the server by throwing
a failure exception. Timeout mechanisms are typically the
only form of failure detection. Of course, in a system
where computation can take arbitrarily long amounts of
time, selecting a good timeout period is difficult. Our model
instead builds upon the more advanced concept of a failure
detector [7] which actively attempts to detect host failure by
periodically contacting remote hosts.

While one could imagine adding this functionality to RPC
systems, the failure recovery mechanisms of RPC systems
leave much to be desired. As mentioned, the thread of control
is logically returned to the client via an exception. This
allows the client to perform failure recovery actions, but does
not give the server the chance to do so. This may seem like a
strange thing to say. Why should the server need to recover
from failures when it is the host that supposedly has failed?
In fact, there are three situations where we might like to
be able to run failure-recovery code on the server; i.) when
the client thinks that the server has failed but in reality it
hasn’t, ii.) when the client itself has failed, and iii.) in a



system where communication is routed through the robots
themselves, when a different host on the communication
route has failed. Figure 1 is an example of this type of
scenario. Current RPC systems do not give the programmer
a mechanism by which to specify failure-recovery code on
the server end of a communication.

Finally, problems that reduce liveness often may be the
result of a series of interactions among a group of hosts.
In other words, the failure that deadlocks a certain host
may occur after that host’s interaction with the failed host,
rather than during the middle of it. The scenario depicted in
Figure 2 is a perfect example of this. Existing RPC systems
do not account for this possibility.

D. Failure Detection

An important piece of our model is detecting when some
host in a set of hosts have failed. We rely on existing
work to provide implementations of these so-called “failure
detectors” [1]. For a given group of hosts dynamically
formed when using our programming model, the hosts would
like to be able to reach consensus on whether or not some
host has failed. However, in “time-free” systems such as
the ones we describe (systems where there is no bound on
the time it takes to perform a computation step or send a
message from one host to another) it has been shown that
this type of consensus cannot be formed [9]. Our approach
takes advantage of certain features of the domain, discussed
in Section III-E, so that the inability of a group of hosts to
reach perfect consensus does not matter. Failure detectors
that provide accurate information during times of system
stability have been implemented [7]. Their suspicions of
failure are good enough for our needs.

E. Transactional Systems

The semantics of the compensating actions in our model
are in some ways quite similar to the roll-back behavior
typical of transactional systems. The idea of using trans-
actions to ensure consistency is a long-studied one, and
many systems make use of Two-Phase Commit [6] for this
purpose. One possibility we considered was treating the
fail block as an operation that commits effects on each
host when end is reached if no hosts have failed, but aborts
otherwise. However there are a few reasons why transactions
were inappropriate. First, there is a basic problem of higher
overhead in transaction-based systems. Commit protocols
generally require one or two extra rounds of communication
during which the application cannot move forward. All of
the additional messages that our model requires can be done
in parallel with forward progress of the system.

Another problem with standard Two-Phase Commit pro-
tocols is that hosts can block indefinitely if the coordinator
fails [3], which is certainly bad for preserving liveness. Non-
blocking commit protocols without this problem do exist,
but they are typically more heavy-weight than Two-Phase
Commit protocols and they bound the number of hosts that
can fail [3]. Our model has no such limit.

F. The ML5 Programming Language

The examples given in this paper show our new pro-
gramming language primitives as extensions to the ML5
programming language (which we have simplified in this
paper for presentation purposes). ML5 [8] is a programming
language based on the functional programming language ML
that allows distributed algorithms to be programmed from
a local perspective. This is possible through the use of a
new primitive, get, which transfers control from one host
to another. This primitive, appears as follows:

get[h]e

This means that expression e will be executed on host
h. The result of the expression will be returned across the
network and will be the result of the entire get expression.
Since get is itself an expression, host h can in turn transfer
control to another host. ML5 has an advanced type system
that determines statically which data needs to be sent across
the network in order to evaluate the expression, as well as
ensuring that expressions do not attempt to use values such as
memory references on hosts where they do not make sense.

We believe that ML5 makes our example algorithms
easier to understand because distributed algorithms can be
programed from the perspective of a single thread. This in
turn makes the fail block easier to understand since it
can lexically enclose computations at several hosts. However,
the programming model that we have developed can be
adapted to work in any programming language with standard
RPC features.

III. THE MODEL

A. Two Pieces

Failure detectors, and the actions that are taken upon
failure, are essential for keeping the members of a distributed
system live in the event of host failure. We propose a new
model that detects host failures and executes compensating
actions to preserve liveness when necessary.

This model consists of two pieces. The first piece,
here exemplified as the programming language primitive
fail block, is a mechanism for signifying the logical time
period and the hosts over which failure should be detected.
Essentially we are specifying the members of the group that
should be attempting to determine if one of the group has
failed, and the period of time during which these group
members should actively attempt to detect these failures. The
fail block also determines the point to which control
flow should return in the event of a host failure.

The second piece, here exemplified by the programming
language primitive push comp, is a mechanism that allows
programmers to specify code that should be executed by
a host in the event that a failure is detected. These two
mechanisms form the basis for our new model.

B. The Fail Block

The fail block appears as follows:

fail block e end,



This expression returns the value of an arbitrary sub-
expression e upon successful completion. At the point in
the program execution where we encounter this expression,
a globally unique identifier i is created. This is the identifier
of the operation that is about to occur. During the execution
of e, whenever the thread of control is transfered to another
host, that host is told that it is executing within operation i.
The members of a group are all the hosts that have been told
they are executing in operation i. Note that the members of
a group are determined dynamically, and may differ based
on which paths are taken in a given section of code.

When expression e has been completely evaluated, a
message is sent to the members of the group notifying them
that operation i has ended. This signifies to each member
of the group that they no longer have to prepare for the
possibility of failure; The code that executes in between the
fail block and end is the logical time period during
which liveness is important. Consider the following code
excerpt:

1: fail_block
2: (* Begin on host 1 *)
3: get[w_2,a_2](
4: (* do work on host 2 *)
5: ...
6: get[w_3,a_3](
7: (* do work on host 3 *)
8: ...
9: )
10: );
11:
12: get[w_4,a_4](
13: (* do work on host 4 *)
14: ...
15: )
16: end

Immediately before line 16, the group consists of four
members, hosts one through four.

The group that we have formed is the basis for our
failure detection. Our model does not specify one particular
algorithm for detecting host failure within a group of hosts.
We leave the details of this problem to existing work [7].
However, we imagine a simple active scheme where hosts
periodically “ping” the members of the group with whom
they have directly interacted and declare a failure if the
host does not respond to these pings. This simple scheme
would cut down on the number of total messages necessary
when compared to a system where every host in the group
attempted to contact every other member.

Finally, in the event that a failure of some kind is detected,
the result of the entire fail block is that an exception is
thrown. This will resume the thread of control on Host 1,
assuming that Host 1 still exists.

C. Specifying Compensations and Error Handling

In order to ensure the liveness of a still-living host in
the event of a failure, that host must be allowed to execute

code that will return it to a live state. For this purpose, we
borrow the concept of compensating actions. Compensating
actions were originally proposed as a programming language
tool that would automatically free resources such as file
handlers even in the event of an exceptional exit from a code
block [12]. In our system, however, compensating actions are
only executed in the event that a failure is detected.

Compensating actions are given to a host using the
push comp programming language primitive, which ap-
pears as follows:

push comp e

Here e is an arbitrary expression. If this expression is
called outside of a fail block, nothing happens. Other-
wise, push comp takes the expression e, does not evaluate
it but rather pushes it on top of a stack on the host where
it was called. Each host may in fact contain multiple stacks,
one for each operation (identified by a unique ID) that it is
taking part in. If a host fails in a group and this failure is
detected, then all of the compensations in the stack identified
by that operation’s unique ID will be executed in last-in, first-
out order. Revisiting our earlier example, this gives us the
following:

5: get[a_3](
5a: myLeader := a_1;
5b: push_comp
5c: (if myLeader = a_1
5d: then myLeader :=NONE
5e: else ()
5f: )
5g: );
6: (* do work on host 3 *)
7: )

In this modified example, Host 3 assigns the address of the
first host to a memory cell, myLeader. In this hypothetical
application, having a host that no longer exists as your leader
will lead to deadlock, as hosts only accept commands from
their leader. Therefore, Host 3 adds as a compensating action
an expression that clears its myLeader reference cell. Note
that this solves the problem presented in Figure 2. In order
to avoid a race-condition between the action and the addition
of its compensating action, we assure a failure can only
interrupt the thread of control at certain designated points
in the code, for instance during a call to or return from the
get primitive.

The compensating actions for a given operation ID will be
executed when the host declares that there has been a failure.
This will occur when that host’s failure detector determines
that one member of the operation group has failed. At this
point, the host will share this failure information with any
other members of the group it had been in contact with
previously. These members will accordingly execute their
compensating actions. Furthermore, any time that a member
of the group that is unaware of the declared failure attempts
to communicate with a member of the group that is aware of
the failure, that member will also be informed of the failure.



This prevents a host that has temporarily failed from coming
back to life and continuing with an operation that has already
been declared a failure.

Finally, when or if the host where the fail block was
begun finds out about the failure, this host will continue
execution of the thread by throwing an exception from the
location of the fail block. This gives the application
programmer the ability to catch such an exception and
attempt a different course of execution.

D. Guarantees Provided

Out new programming model provides certain guarantees
to the programmer that we will now describe.

For a given fail block enclosing transfers of control
to other hosts, if the fail block returns successfully then

• No host failure was encountered by the thread as it
passed through the various hosts, and

• All of the actuator commands issued by the thread as
it passed through those hosts were successfully issued.

If on the other hand, a host failure was encountered by
the thread as it moved from host to host or if a failure is
detected on a previously visited host before the end of the
fail block is reached, then for every host n visited within
the block,

• Either n failed permanently,
• Or,

– If n is the host on which the fail block was
begun, then an exception signaling the error will
be thrown.

– Otherwise, if n is another host, the stack of com-
pensations will be run.

The above guarantees do imply a low-level liveness guar-
antee. Unlike in protocols such as Two-Phase Commit where
the entire system can be prevented from making progress
due to the failure of certain hosts [3], in our system, threads
are always able to move forward, whether it be executing
application code or failure handling code. This is largely due
to the fact that our model does not have to block waiting for
agreement of any kind.

Finally, there is some implication of liveness at the ap-
plication level, but it is dependent on the application code.
Our system does guarantee that in the event of a host failure
within the fail block, compensating actions will be run.
However, we have left it up to the programmer to determine
which actions need to be taken as compensation to ensure
overall application liveness. Therefore, it is possible that even
with compensating actions applications may become “stuck”
in some application-specific sense. We leave this problem for
future work.

E. A Lack of Consistency

The guarantees provided in the previous section, when
combined with features of the application domain, provide us
with a major benefit; our model does not require consistency
across the hosts in a group. Specifically, there is no need to
verify that upon successful exit of the fail block none

of the other hosts in the group have executed their compen-
sating actions. This is important because it has been shown
in previous work that in systems where computation and
communication can take an unbounded amount of time it is
not always possible for the members of a group to reach
consensus about whether one of the members has failed [9].

The reasoning behind why this consistency is not required
is as follows: In the domain that we describe, the ultimate
goal of any application is to effect actuator actions, and
in order to issue a command to an actuator, the thread of
control must transfer to the host on which that actuator
is located. In terms of consistency, what we really are
talking about is the thread of control proceeding past the
end of an fail block, signaling successful completion,
when in fact a host in the group detected failure and
executed its compensating actions. At this point we know
something important about the host(s) that detected failure
and the host(s) (if there is one) that actually failed; in
between the time when the failure was detected and when
the fail block successfully completed no actuator actions
were necessary on those hosts, because if they had been the
thread of control would have had to migrate to those hosts,
and it would have detected the inconsistency. Therefore, in
the sense that actuator movements are the ultimate goal of
any application in this domain, those hosts have already done
their important work (or never had any to do).

We believe that this programming feature supports a “best
effort” programming style, where robots in the ensemble
do their best to perform a given action but can try other
approaches if it is unsuccessful. We believe that this style
of programming will be key to reducing application com-
plexity when ensembles grow to thousands and even tens of
thousands of robots.

All this raises the question, “what if we will not be
making an actuator movement on a host, but we still need
to know that it has not given up prematurely?” This tests
the assumption that actuator movements are the ultimate
goal of applications in this domain. For example, what
if a robot performs an important structural function in a
robot ensemble? What this question actually comes down
to is whether the liveness of that structural robot, in the
event that the robots that interact with it fail, is critical.
For certain applications, the developer may decide that the
stability of the structure is more important than liveness
in the event of a failure. This is exactly the time when
the fail block should not be used, since this feature is
intended to delineate those parts of the computation where
liveness does matter. If the liveness of a structural host was
important, then you would at least have to have some sort of
timeout mechanism. Our system provides a natural way to
express these timeouts without having to explicitly encode
them each time.

IV. CONCLUSIONS AND FUTURE WORK
A. Contributions

Our work takes the existence of some distributed control-
flow mechanism for granted, whether that mechanism be an



RPC-like language, or a a programming language like ML5.
Our work expands the failure-handling capabilities of all
these systems for use in the domain of collaborative robotics.
Our work can be viewed as an improvement to these systems,
and as such provides two specific additions:

• Compensating Actions: We have taken the concept
of compensating actions [12], used in the past as a
means of ensuring cleanup from exceptional paths, and
extended it to work as a means of ensuring liveness in
a distributed system. As such, our compensations only
need to be executed in the case of failure, rather than
in the general case.

• Previously Contacted Hosts: Failure mechanisms pro-
vided by existing distributed programming systems only
apply to the server host that is currently being contacted
by the client host. However, we have shown how the
failure of a host can lead to the unavailability of a
whole group of hosts, including hosts that were pre-
viously contacted. Our system allows these groups of
hosts to be formed dynamically so that the appropriate
compensating action can be taken on necessary hosts.
The implicit building up of the members of the group
is one of the key new contributions of this work.

By combining the above contributions with existing work
on the detection of failures within a group, we have de-
veloped a programming abstraction that makes it simpler for
developers to ensure liveness of their applications in the face
of large-scale host failure.

B. Future Work

Currently we are developing an implementation of the
model described in this paper so that we can study its
practicality and expressiveness in real-world applications.
Additionally, our model currently dictates that all hosts
visited within the fail block be implicitly added to the
group of hosts, but we understand that this may not always
be a desirable feature. We want to find a way to allow certain
visited hosts to be excluded from the group. In our model,
nothing special is done to prevent improperly synchronized
interaction between multiple threads in compensating action.
While this is a concern, it is currently outside the scope of
this paper, and we leave the issue for future work. Finally, at
this point in time we force the burden of tracking which
effects have occurred on the programmer. However, it is
our belief that this system could be enhanced with ideas
from software transactional memory [10], [4] so that the
underlying runtime system would track and automatically
roll back modified memory.

C. Conclusions

In this paper we presented a new programmer model that
makes it easier for developers of software for distributed, col-

laborative robots to deal with the failure of hosts. We observe
that in order for the overall application to make progress,
certain effects of computation may need to be “undone” in
the event of host failure. The model we have described,
here expressed as a programming language feature, allows
developers to specify sections of code over which failure
could lead to liveness problems, and implicitly which hosts
it might affect. Developers also specify the compensating
actions that should be taken on these hosts in the event that
a failure is detected. While hosts cannot always come to
agreement upon whether or not a failure has occurred, in
this domain this agreement is not essential.

V. ACKNOWLEDGMENTS
Thanks to Kevin Bierhoff, Ciera Christopher, Michael

Ashley-Rollman and Padmanabhan Pillai for their valuable
feedback.

REFERENCES

[1] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors
for reliable distributed systems. J. ACM, 43(2):225–267, 1996.

[2] Claytronics project website.
http://www.cs.cmu.edu/˜claytronics/.

[3] Jim Gray and Leslie Lamport. Consensus on transaction commit. ACM
Trans. Database Syst., 31(1):133–160, 2006.

[4] Tim Harris, Simon Marlow, Simon Peyton-Jones, and Maurice Herlihy.
Composable memory transactions. In PPoPP ’05: Proceedings of the
tenth ACM SIGPLAN symposium on Principles and practice of parallel
programming, pages 48–60, New York, NY, USA, 2005. ACM Press.

[5] M.W. Jorgensen, E.H. Ostergaard, and H.H. Lund. Modular atron:
Modules for a self-reconfigurable robot. In Intelligent Robots and
Systems, 2004. (IROS 2004). Proceedings, pages 2068–2073, 2004.

[6] B. Lampson and D. Lomet. A new presumed commit optimization for
two phase commit. In Proceedings of the 19th Conference on Very
Large Databases, Morgan Kaufman pubs. (Los Altos CA), Dublin,
1993.

[7] Achour Mostefaoui, Eric Mourgaya, and Michel Raynal. Asyn-
chronous implementation of failure detectors. In 2003 International
Conference on Dependable Systems and Networks (DSN’03), page
351, 2003.

[8] Tom Murphy, VII, Karl Crary, and Robert Harper. Distributed control
flow with classical modal logic. In Luke Ong, editor, Computer
Science Logic, 19th International Workshop (CSL 2005), Lecture
Notes in Computer Science. Springer, August 2005.

[9] Michel Reynal. A short introduction to failure detectors for asyn-
chronous distributed systems. SIGACT News, 36(1):53–70, 2005.

[10] Michael F. Ringenburg and Dan Grossman. Atomcaml: first-class
atomicity via rollback. In ICFP ’05: Proceedings of the tenth ACM
SIGPLAN international conference on Functional programming, pages
92–104, New York, NY, USA, 2005. ACM Press.

[11] J.W. Suh, S.B. Homans, and M. Yim. Telecubes: mechanical design of
a module for self-reconfigurable robotics. In Robotics and Automation,
2002. (ICRA 2002) Proceedings., pages 4095–4101, 2002.

[12] Westley Weimer and George C. Necula. Finding and preventing run-
time error handling mistakes. In OOPSLA ’04: Proceedings of the 19th
annual ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications, pages 419–431, New York, NY,
USA, 2004. ACM Press.

[13] A. Wollrath, R. Riggs, and J. Waldo. A distributed object model for
the Java system. In 2nd Conference on Object-Oriented Technologies
& Systems (COOTS), pages 219–232. USENIX Association, 1996.

[14] Zhonghua Yang and Keith Duddy. CORBA: A platform for distributed
object computing. SIGOPS Oper. Syst. Rev., 30(2):4–31, 1996.


