
Meld: A Declarative Approach to Programming Ensembles

Michael P. Ashley-Rollman, Seth Copen Goldstein, Peter Lee, Todd C. Mowry, Padmanabhan Pillai

Abstract— This paper presents Meld, a programming lan-
guage for modular robots, i.e., for independently executing
robots where inter-robot communication is limited to immediate
neighbors. Meld is a declarative language, based on P2, a logic-
programming language originally designed for programming
overlay networks. By using logic programming, the code for an
ensemble of robots can be written from a global perspective, as
opposed to a large collection of independent robot views. This
greatly simplifies the thought process needed for programming
large ensembles. Initial experience shows that this also leads to
a considerable reduction in code size and complexity.

An initial implementation of Meld has been completed and
has been used to demonstrate its effectiveness in the Claytronics
simulator. Early results indicate that Meld programs are con-
siderably more concise (more than 20x shorter) than programs
written in C++, while running nearly as efficiently.

I. INTRODUCTION
Modular robotics is based on the concept of a (typically

homogenous) collection of robots working together to carry
out a task. Most of the designs proposed to-date involve the
robots attaching together to form larger robotic structures.
These connected ensembles gain capabilities beyond those
of the individual robots, including: greater strength from
concerted, parallel efforts; flexible, reconfigurable form to
better deal with the environment and obstacles; and greater
capacity to redundantly sense the surroundings. However,
planning and control for the ensemble increases in com-
plexity due to the large number of robots and exponentially
large configuration space. Compounding the problem is the
fact that computation, sensing, and actuation are distributed
among the relatively limited robots—in general, no one robot
is strong enough to move all of the other robots, nor is
it possible, typically, for any one robot to determine the
positions of every other robot or where they should be.
These limitations in strength and knowledge multiply the
number of possible failure modes. For example, a robot
might move to the wrong location or physically impede the
desired movement of other robots. The ensemble as a whole
might move into an unstable structure and risk collapse. To
succeed, the individual robots in a modular robotics system
must work cooperatively.

Modular robots must, as a collective, compute the overall
goal, move into the right positions, and know when they have
achieved the goal. All of this must be achieved in a fault-
tolerant manner. These difficulties raise significant questions

This work was supported in part by NSF Grant#CNS-0428738, and Intel
Corporation.

Michael P. Ashley-Rollman, Seth Copen Goldstein, Peter Lee, and Todd
C. Mowry in CSD at Carnegie Mellon University, 5000 Forbes Ave, 15213
{mpa,seth,petel,tcm}@cs.cmu.edu

Padmanabhan Pillai is at Intel Research Pittsburgh
padmanabhan.s.pillai@intel.com

about how a programmer should think about programming
modular robot systems. We believe it is natural to think
about what the robot ensemble as a whole should do, but
programming the robots requires thinking about what the
individual robots should do. This creates a problem of
perspective, or of understanding the relationship between
local and global behavior. When considering the desired
global behavior it is frequently unclear how to translate it
into local rules that can be run on individual robots.

For example, to have a set of robots share some sensor
information and cooperatively decide on a simple next goal
may require a complex program that manages dozens of
possible states, several different message types, and hundreds
of state transitions. Part of this complexity and burden on the
programmer is due to the low-level nature of many common
programming languages (particularly C/C++ and similar lan-
guages) that force thinking in terms of local data structures,
low-level operations, and communication primitives. Often,
it is more natural to think at a higher level of abstraction,
in terms of the bits of information known, what can be
deduced from these, and how to make a decision or select a
goal based on these. This leads us to consider a declarative
programming paradigm, in which a programmer specifies the
high-level logic of what is to be decided or achieved, and
leaves it to the implementation of the programming language
to work out the low-level details of data manipulation and
communication, i.e., how to achieve it.

There has been some precedence in using declarative
languages in situations where a large number of computing
nodes must work cooperatively. A notable example is the use
of a language called P2 [5] in the context of programming
overlay networks. The experience of using P2 for networks
demonstrates that logic programming is well suited for
cooperative, distributed computing environments. The P2
language allows common network routing protocols to be
written in just a few lines of P2 code rather than pages of
C++, and often with competitive run-time performance. In
essence, P2 shows that independent network nodes can work
collectively and efficiently to prove that a global goal has or
has not been attained. Agreement among the many nodes is
achieved when they all arrive at the same irrefutable proof.

Although actuation and motion in a robotics system causes
continuous changes in network topology and provides a more
dynamic environment than is the case for network program-
ming, we claim that the same level of conciseness, simplicity,
and efficiency in programming is achievable for modular
robotics. To support this claim, we present Meld, a logic-
programming language that is inspired by P2, and designed
for modular robotics. More specifically, Meld addresses

RULE1: Dist(S,D):- At(S,P),
Pd = destination(),
D = |P - Pd|,
D > robot radius.

RULE2: Farther(S,T):- Neighbor(S,T),
Dist(S,DS),
Dist(T,DT),
DS ≥ DT.

RULE3: MoveAround(S,T,U):- Farther(S,T),
Farther(S,U),
U 6= T.

Fig. 1. Walk program.

the problem of independently executing robots where inter-
robot communication is limited to immediate (in contact)
neighbors. Meld allows the code for an ensemble of robots to
be written from a global perspective, focusing on information
and logic for decisions, as opposed to managing a large
collection of independent robot programs and dealing with
low-level communication and data management tasks. This
greatly simplifies the thought process needed for program-
ming. Initial experience shows, just as with P2, that this leads
to a considerable reduction in code size and complexity.

In this paper we have already described some of the
difficulties that arise in programming modular robotics. Next
we introduce the logic programming language we wish
to use for modular robotics and discuss how it addresses
these problems. Finally, we evaluate the new challenges
that arise from the logic programming approach and discuss
an approach for tackling them. An initial implementation
of Meld has been completed and used to demonstrate its
effectiveness in dprsim[2], a Claytronics[4] simulator. Early
results indicate that Meld programs are 20x shorter, while as
efficient as the same programs written in C++.

II. THE MELD LANGUAGE

In this section we give a presentation of the Meld lan-
guage. We explain how logical programming works, and
provide a simple example that introduces some of the salient
features of the language.

A. The Meld Logic

Logical programming languages use a collection of facts
and a set of production rules for combining existing facts
to produce new ones. Each rule specifies a set of conditions
(expressions relating facts and pieces of facts), and a new
fact that can be proven (i.e., generated safely) if these con-
ditions are satisfied. As a program is executed, the facts are
combined to satisfy the rules and produce new facts which
are in turn used to satisfy additional rules. This process,
called forward chaining, continues until all provable facts
have been proven. A logic program, therefore, consists of the
rules for combining facts while the execution environment
is the set of base facts that are known to be true before
execution begins. It is important to understand that the base

a b
c

a b
c a

(i) starting location at origin (ii) robot a moves around b

b
c a

cb
c a

(iii) robot a finishes moving iv) robot c now moves around a

cb
a

(v) robot c finishes moving

Fig. 2. Illustration of robots collectively “walking”.

(a) Base facts:
Neighbor(a,b)
Neighbor(b,c)
Neighbor(a,c)
At(a,(0,0))
At(c,(1,

√
3))

Neighbor(b,a)
Neighbor(c,b)
Neighbor(c,a)
At(b,(0,2))

(b) Facts added after applying RULE1:
Dist(b,2)
Dist(a,4)

Dist(c,˜2.5)

(c) Facts added after applying RULE2:
Farther(a,b)
Farther(c,b)

Farther(a,c)

(d) Facts added after applying RULE3:
MoveAround(a,c,b) MoveAround(a,b,c)

Fig. 3. Example of how the facts are updated for the Walk program.

facts represent the assumptions being made about the system
and the information that is available on that system.

We use a simple example to show how logical program-
ming works in Meld. In our example, we consider a set of
cylindrical robots that move across a flat plain by rolling
against one another. We will assume that each robot is able
to identify its neighbors and knows its location in a globally
consistent coordinate system. We use two kinds of base facts,
one to represent each type of information available in the
system: a Neighbor(S,T) fact which specifies that robot
S is adjacent and connected to robot T; and an At(S,P)

fact which specifies that robot S is at the point P=(X,Y). 1

Consider the example program, shown in Figure 1, which
takes an ensemble of three robots and “walks” them to a
specified location. To support the specified location, we will
assume there is a function destination() which returns
the target location. We will also assume that the three robots
each start adjacent to each other; we will try to maintain
this invariant. Assuming the starting positions are a triangle
at the origin, as shown in Figure 2, will give us the base facts
shown in Figure 3(a). Suppose also that destination()
always returns (0,4).

As we look at our collection of rules, shown in Figure 1,
and our base facts, shown in Figure 3(a), we can see that
we cannot satisfy RULE2 or RULE3 as we have neither
Dist(S,D) nor Farther(S,T) facts available. We are, how-
ever, able to apply RULE1 as it only requires a single At(S,P)
fact, of which we have three. This gives us a new Dist(S,P)
fact for each catom, as depicted in Figure 3(b). Notice that
after we have applied this rule, RULE3 is still inapplicable,
but we now have enough facts to apply RULE2 giving us a
collection of Farther(S,T) facts as shown in Figure 3(c).
Finally, RULE3 can be applied to produce two instances
of MoveAround(S,T,U) as shown in Figure 3(d). At this
point we can verify by inspection that no additional facts
are derivable using any of our rules. Without additional facts,
rules, or actual motion, our program has run to completion.

We note that this entire program and the processing has
been described in a global perspective, and not in the view
of individual robots. Meld provides the programmer this
global abstraction, and will compile down to code which
accomplishes this processing in a distributed fashion across
the participating robots, as described later in Section III.

B. Facts With Side-effects

As we have seen, our program quickly determined that
robot A should move around one of the other robots, and
then immediately halted. Rather than halt we would like the
program to cause robot A to move and then continue moving
other robots until the ensemble reaches the destination. We
accomplish this by allowing some facts to cause a side-
effect to occur. Thus, for our example, we will interpret
MoveAround(S,T,U) as a motion primitive which will
cause S to roll around the outside of T until it touches U. If
S and U are already in contact, it will roll S around T to the
other side of U as shown in Figure 2.

It is worth noting that there is nothing particularly special
about this MoveAround(S,T,U) primitive for motion.
Any other motion primitive would work equally well from
the perspective of the language; which motion primitives

1One can consider a weaker set of assumptions where robots cannot
determine their global locations, but only the relative locations of their
neighbors. This could easily be represented using base facts of the form
neighbor(S,T,D) which indicate that S and T are neighbors and that T
is in the D direction from S, where D is specified in some local coordinate
system known only to S. For a sufficiently dense ensemble, this can be
used to generate a global coordinate system and the At(S,P) facts [9]. In
general, the base facts should reflect the available sensor information and
assumed knowledge of the world.

AGGREGATE: Dist(A, min<n>).

RULE1A: Dist(A,0):- At(A, P),
P = destination().

RULE1B: Dist(A,n+1):- Neighbor(A,B),
Dist(B,n).

Fig. 4. Modified rules for walk program using gradient distances and min
aggregates.

make sense is dependent upon the particular system of
modular robots. If the low-level hardware drivers only pro-
vide functionality to step clockwise and counter-clockwise,
then we would use MoveAround(S,T,U) facts to derive
instances of StepCW(T) and StepCCW(T) using appro-
priate rules. It may even be desirable to have a variety
of motion primitives available as well as other side-effects
relating to sensors, changing color, or any other piece of
physical state.

The key issue with side-effects is that they can result
in a change in the base facts. Recall that our base facts
At(S,P) and Neighbor(S,T) were dependent upon the
physical layout of the ensemble. If one robot moves, it will
effect changes in these base facts. Some new base facts will
become true as robots gain new neighbors and some old
base facts will become false as robots lose neighbors. The
results of these changes are automatically handled by the
language. Any fact that is true given the new base facts will
eventually be proven and any fact which is supported by
a proof including a fact that has changed will eventually
cease to exist via a process called Deletion, explained in
Section III-B. It is important for the programmer to be aware
that while untrue facts will vanish, they will not always do
so instantaneously and thus it is necessary to be aware of
when facts may potentially be stale.

When MoveAround(S,T,U) is proven (e.g., in the
walking program example) it causes the motion to occur;
a new set of base facts is created, and old facts inconsistent
with these facts are deleted. The program can continue to run,
and proves additional MoveAround(S,T,U) facts until
the target location is reached.

C. Aggregates

In addition to the regular rules which prove all possible
instances of a fact, rules may also be used to produce
an aggregate over all provable instances. There are two
types of aggregate rules. One type of aggregate picks out
a particular fact from all provable facts, such as minimizing
or maximizing over one of the fields in the resulting fact.
The other type of aggregate computes a result based on all
provable facts, such as a summation over one field. The
ability to take minima and maxima and compute sums can be
useful for many things such as calculating a shortest path. In
addition, aggregates could be done for any arbitrary method
of determining the “best” value for a field as long as it defines
a total ordering and some method for munging a collection
of facts to produce just one.

As an example, suppose RULE1 of the Walk program in
Figure 1 was rewritten to be based on gradients from the
destination as in Figure 4. Observe, then, that using RULE1B,
a robot will obtain a distance from each of its neighbors,
and potentially have many different distances available to it.
Instead of this behavior, we wish to pick a single distance
and the one we want is the shortest known. Thus, by using
the min aggregate, only the smallest known distance will be
considered to be valid at each robot. When a robot receives a
new Dist that is greater than the current one, it will ignore it
and not prove anything new with it. When, however, it gets
a Dist that shows the robot to be closer than it previously
supposed, it will drop the old value, all the facts proven from
the old value will disappear and be replaced by facts proven
from the new best distance.

III. IMPLEMENTING MELD ON MODULAR
ROBOTS

In this section, we consider some of the implementation
issues that arise when applying the Meld language to modular
robots, particularly with regard to distributed execution and
complexities in deleting facts. We will also consider how
Meld helps solve some critical problems faced when pro-
gramming modular robots, and also investigate some new
concerns that arise in our new language.

A. Distributed Execution

Although we have discussed Meld programs from a purely
global perspective, in practice, the actual execution of the
programs will be distributed across a modular robotic en-
semble. In a distributed environment, it will be necessary to
choose a robot where each fact will be located. Furthermore,
a method of sharing facts is need to permit rules to use facts
that reside on multiple different robots.

To distribute the computation across the ensemble, we
adopt the idea of localization from P2 [5], which requires
explicit specification of the location of a fact. As a matter
of convention we take the first element of any fact to be
the robot where it is known. Furthermore, if a computation
involves facts known at different locations, then we require
a way for the robots that own the facts to communicate. We
therefore stipulate if a rule includes facts known at both S
and T then the fact neighbor(S,T) must also be included.
If we again consider the example shown in Figure 1 we
notice that each Dist is known at the catom being talked
about, MoveAround is known at the catom that needs to
move, and Farther is known at the father away catom,
all of these facts are where we would expect them. Also
notice that RULE1 and RULE3 are local rules, while RULE2
contains the Neighbor(S,T) fact as required.

Given our convention, it is relatively straightforward to
implement the sharing of facts across the distributed envi-
ronment. If a rule requires some facts known to A and some
facts known to B, then A can send B a message whenever
it gets a complete set of its half of the facts. B can then
combine this message from A with its share of the facts to
complete the rule. To reduce the number of messages sent,

RULE1: Foo(A):- Bar(A).

RULE2: Foo(A):- Neighbor(A,B), Foo(B).

Fig. 5. Rules resulting in a cyclic proof.

we always take B to be the node where the resulting fact
should be known and A to be the other involved node, if
any. Applying this to RULE2, we see that each node must
send it’s Dist to its neighbors so that they can determine
if they are farthest from the destination. For a more detailed
description of how this works, see [5].

B. Deletion

In a modular robotic setting with actuation, the base facts
representing physical state will change frequently, so we
must ensure that deletions of facts occur efficiently and
correctly. When a fact is deleted, all facts that were derived
from it must be deleted as well. This can be accomplished
by applying the rules to determine which other facts were
derived and need to be deleted, just as when deriving
new facts. Each of these facts is then deleted. A problem,
however, arises if we delete a fact that has an alternative
proof available that does not rely on any deleted facts and
is, therefore, still valid. This problem can be resolved through
the use of reference counts to keep track of how many
derivations exist for a given fact. Then, when a fact is deleted,
we decrement its reference count and only if the count goes
to zero do we perform the regular deletion operation [5].

Even with this approach, a problem arises when we have a
cyclic proof, i.e., one where a fact may be, indirectly, derived
from itself. To illustrate this, we consider the example pro-
gram in Figure 5 running on two adjacent robots. Assuming
we start out with the Bar(a) fact (Figure 6(a)), running the
rules gives us the facts shown in Figure 6(b). In this example,
when Bar(a) is deleted, we see that Foo(a) must be deleted
by looking at RULE1. When we delete Foo(a) we simply
decrement its reference count, see that it is non-zero, and
presume that an alternate proof exists. This leaves us with
the facts shown in Figure 6(c). Notice that we believe Foo(a)
and Foo(b) are both true, but if we were to wipe out all of
the derived facts and rerun the program, we would not be
able to prove either. Thus, reference counting alone does not
fix all of the problems with deletion.

As this problem arises directly from cyclic proofs, we
would like a way to break the cyclic dependencies. This
can be implemented in the compiler with a relatively simple
transformation of any program into a cycle-free version. We
first add to each fact an extra term representing the depth of
the derivation used to prove the fact. In each rule, the depth
is set to one plus the maximum depth of the facts used as
shown in Figure 7. This serves to distinguish two copies of
the same fact when one was proven from the other. Note
that if A was used in the derivation of B then Depth(A)
< Depth(B). This is adequate to remove any cyclic proofs
where A is used to prove A as Depth(A) 6< Depth(A). The
use of the min aggregate on the rewritten facts ensures that

(a) Initial facts:
Neighbor(a,b) (x1)
Bar(a) (x1)

Neighbor(b,a) (x1)

(b) Facts after application of rules:
Neighbor(a,b) (x1)
Bar(a) (x1)
Foo(b) (x1)

Neighbor(b,a) (x1)
Foo(a) (x2)

(c) Facts after deletion of Bar(a) using naı̈ve method:
Neighbor(a,b) (x1)
Foo(a) (x1)

Neighbor(b,a) (x1)
Foo(b) (x1)

(d) Facts after deletion of Bar(a) using advanced method:
Neighbor(a,b) (x1) Neighbor(b,a) (x1)

Fig. 6. Example of facts for the cyclic proof program. The reference count
of number of derivations is shown in parentheses after each fact.

AGGREGATE: Foo(A, min<n>).

RULE1: Foo(A,n):- Bar(A,m), n = m+1.

RULE2: Foo(A,n):- Neighbor(A,B,m1),
Foo(B,m2), n = 1+max(m1,m2).

Fig. 7. Rewritten rules for cyclic proof program.

only the version of a fact with the shallowest derivation tree
can be used in further proofs, preventing cyclic programs
from looping forever.

However, the use of aggregates can lead to additional
problems if we are not careful. When an aggregate fact is
deleted, it is necessary to instate the next best value for
the aggregate in its place, which may trigger the proof of
additional new facts. If deletion is immediately followed by
the update of the aggregate facts, in the above code, the
system can continue to prove new, deeper derivations of
Foo(a) and Foo(b) while deleting the shallower ones.
This will result in the code running forever, as deletions
chase behind, but never catch up to the newly proven
facts. This problem can be simply resolved by waiting for
deletion to recursively complete before updating values for
any affected aggregates.

C. Addressing the Issues in Programming Modular Robots

The Meld language can help resolve some of the criti-
cal obstacles to effective programming of modular robotic
ensembles. In particular, it alleviates problems relating to:

1) Perspective: Most programming languages force code
to be written in the local perspective of individual robots.
As we noted before, it is often easier to describe what we
would like a modular robotics system to do while looking
at a subset of the robots rather than at one individual in the
system. Meld allows us to write rules across multiple nodes,
making it easy to write programs from a group or global
perspective. Meld automatically compiles down to code that
is distributed across the individual robots.

2) Fluctuating Topology: Another critical problem is that
motion within a robotic ensemble results in an ever changing

ensemble topology. As discussed in the previous section,
Meld neatly takes care of these changes by deleting any
facts that depend on the lost neighbor relations and building
up new facts based on the new ones. This means that the
program can ignore the changes in the ensemble topology as
they are handled automatically. Each rule the programmer
creates depends only on the current neighboring nodes and
need not care about which nodes were neighbors in the past
and which will be neighbors in the future. The programmer
need only worry about the current state of the ensemble.

3) Uncertainty: While it will take additional work to
determine whether this system can be extended to be in-
herently fault-tolerant, it does lend itself to writing fault-
tolerant code. After a robot stops moving, it will return to
figuring out what it ought to be doing independently of how
it arrived at it’s current location. Thus, whether or not the
robot reached it’s intended location, it will determine it’s
best next step. Any location that may have been expecting
the robot will cease to expect it as the broken neighbor
relation from the moving robot will automatically delete any
expectations that depended on the moved robot. Thus, as
long as the program was written to allow robots to compute
an appropriate course of action from any location within the
ensemble the algorithms will simply continue.

D. Potential Concerns

As with any change of representation, Meld will make
some things easier to represent, while others become more
difficult. In particular, classical logic programming is poor at
representing state. As long as all of the interesting state is a
direct consequence of the base facts and as long as it changes
when the base facts change, the state is easy to keep track
of as it follows “for free” from the changes in the base facts.
While the presentation here takes only the neighbor and
at relations as base facts, it is a simple matter to extend these
with other useful facts including things like sensor data. Thus
it is easy to allow state to change dynamically in conjunction
with more things than just the neighbors and locations. Other
state that changes independently from the base facts is much
more difficult to represent.

This begs the question: how important is state that changes
independently from the ensemble topology, sensor data, or
other base facts and, if truly needed, is there a way we can
extend the system to make this dynamic state easier to deal
with? Contrary to our initial thoughts, our experiences using
Meld seem to indicate that aggregates may eliminate the need
to represent intermediate dynamic state. If, however, other
problem domains end up requiring significant dynamic state
then we propose moving to a linear version of the logic for
these programs.

The idea behind a linear logic [3] is that each fact can
only be used once for one rule and it is then deleted from
the table. This makes deleting old state trivial as there is now
a method, apart from motion, of deleting arbitrary old facts.
This allows one to maintain state by deleting the old piece
of state whenever a newer piece is generated.

Messages Sent

7281

1296

18k

1164

5035

18k

1080 1080

Gradient Routing Localize Morph

To
ta

l M
es

sa
ge

s
Se

nt
C++ Messages
Meld Messages

CPU Utilization

66m

10k
12m

740k

35m

120m

1.5m4.4m

Gradient Routing Localize Morph

M
ax

 C
PU

 P
er

 R
ob

ot

C++ CPU
Meld CPU

Memory Usage

448318

3.4k

8
2615

24.4k

476412

Gradient Routing Localize Morph

M
ax

 M
em

or
y

Pe
r R

ob
ot C++ Memory

Meld Memory

Fig. 8. Performance of Meld applications compared with C++ equivalents.
All were run on dprsim [2].

IV. EVALUATION

A. Efficiency and Scalability

We evaluated the performance of Meld in terms of network
traffic, memory usage, and CPU utilization by comparing
applications written in both Meld and C++. The programs
used are all of interest to modular robots, and were run
on dprsim [2], the modular robotic simulator from the
Claytronics project. Gradient generates a gradient field across
the ensemble, which is the basis of one approach to pro-
gramming modular robots. Routing implements a standard
distance vector network routing algorithm and is useful for
communication between arbitrary robots. Localize computes
a global coordinate system from the local observations of
individual robots [9]. Morph changes the physical topology
of the ensemble from one arbitrary shape to another.2

For each application, the total number of messages sent
between robots, as well as the maximum memory and CPU
used on any one robot, were measured (see Figure 8).

2All of these programs along with videos of the Morph program are avail-
able at www.cs.cmu.edu/∼claytronics/iros07-meld.html.

Scaled Messages Sent

21
6

51
2
10

00
17

28 64 12
5

25
6

51
2

21
6

51
2
10

00
17

28 25 50 10
0

T
o

ta
l
M

e
ss

a
g

e
s

S
e
n

t

C++ Messages
Meld Messages

gradient routing localize morph

Scaled Maximum CPU Usage

21
6

51
2
10

00
17

28 64 12
5

25
6

51
2

21
6

51
2
10

00
17

28 25 50 10
0M

a
x
im

u
m

 C
P

U
 U

sa
g

e
 o

f
a
n

y
 R

o
b

o
t

C++ CPU
Meld CPU

gradient routing localize morph

Scaled Maximum Memory
Usage

21
6

51
2
10

00
17

28 64 12
5

25
6

51
2

21
6

51
2
10

00
17

28 25 50 10
0M

a
x
im

u
m

 M
e
m

o
ry

 U
sa

g
e

o
f

a
n

y
 R

o
b

o
t

C++ Memory
Meld Memory

gradient routing localize morph

Fig. 9. Scaling properties of Meld applications compared with C++
equivalents over varying ensemble sizes. For each application, the bars are
normalized to 1.0 for the smallest ensemble for each language.

Meld and C++ applications generated comparable network
traffic, but Meld used an order of magnitude more memory
and CPU. For large ensembles, however, a more important
metric is how well performance scales as the ensemble size
increases. The measurements for varying sized ensembles,
shown in Figure 9, demonstrate that Meld applications scale
just as well as C++ ones.

Further investigation showed that the extra memory used
by Meld was due to the need of Meld to hold onto every fact
ever proven, whereas a C++ programmer can better predict
which information will be useful again in the future and
which will not. It is not clear that the memory comparison
was really fair, as Meld is prepared to deal with fact deletion
as a result of network topology changes, while the C++
programs are unable to do so. The added cost in memory
of adding this support to the C++ programs is presently
unknown. In addition, the Meld compiler is immature and
not well optimized, so it may be possible to make up a
large part of the performance difference through compiler
optimization. In particular, significant CPU time is currently

Program Length

106

262
331

944

5 13 48 58
5 8 17 32

Gradient Routing Localize Morph

Li
ne

s
of

 C
od

e
C++ Statements - ";"
Meld Expressions - ","
Meld Statements - "."

Fig. 10. Lines of code in C++ vs Meld

expended performing database lookups using a naı̈ve linear
table-space, so there is potential for much improvement with
simple optimizations.

B. Length of Programs

As one purpose of Meld is to simplify the process of
writing programs for modular robots, it is necessary to
somehow quantify the results. To do this, we have measured
the number of lines of code in each of the applications
described above. For C++, the metric used for counting lines
of code was the number of lines containing semicolons in the
program source. For Meld there is no established metric, so
we measured both commas and periods. These measurements
are shown in Figure 10. These metrics show that Meld
programs are frequently twenty to thirty times more concise
than the equivalent C++ applications. This difference is a
compelling demonstration of the conciseness possible when
writing programs with Meld.

V. RELATED WORK

Existing approaches to programming modular robots are
almost as varied as the robots themselves. Most of the work
to date has focused on making it easier to program individual
robots, whereas this work focuses on how to program the
ensemble as a whole.

Meld is directly inspired by P2 [5], which uses a declar-
ative logic programming style to program overlay networks.
Meld extends P2 in several ways to make it suitable for
programming modular robots: e.g., we added new primitives,
we changed the compiler and runtime system to support
movement, and we implemented an efficient form of deletion.

Declarative programming styles have also been used effec-
tively in the context of sensor networks [6], [8], [10]. While
these languages use a declarative approach to programming
ensembles, they focus on data aggregation and analysis rather
than causing movement and state changes. In addition to
the fact that units in a sensor network generally do not
move, another key difference in this domain that is of prime
importance is which nodes a given node can communicate
with, not where the nodes are physically located.

Previous work that is more closely related to robots and
the ensemble perspective includes OSL [7] and Proto [1].
These languages are declarative, and allow programmers to
specify ensemble behavior at a fairly high level of abstraction

(which is then compiled to local rules that run on each unit).
In this, these have been inspirational to our work. A key
difference, however, is that the genesis of these languages is
stationary nodes that communicate wirelessly: hence it is the
communication topology—e.g., who you can communicate
with in less than x hops—that matters rather than the actual
geometry of your neighbors.

VI. CONCLUSIONS

While programming modular robotics is presently a dif-
ficult task, it can be greatly simplified by making use of
the appropriate tools. Meld provides a big step forward
in our development of these tools as it demonstrates that
logic programming can greatly simplify the programming
of modular robots by making programs very concise while
maintaining reasonable efficiency.

VII. ACKNOWLEDGEMENTS

We would like to thank the Claytronics group at Carnegie
Mellon University and the DPR group at Intel Corporation
for their assistance. In particular, we thank Casey Helfrich
for his support on dprsim, and Jason Campbell, Michael De
Rosa, and Siddharta Srinivasa for their ideas and valuable
feedback. We would also like to thank Jake Donham, Bryant
Lee, and Garth Gibson for their assistance with the initial
version of Meld.

REFERENCES

[1] J. Beal and J. Bachrach. Infrastructure for engineered emergence
on sensor/actuator networks. IEEE Intelligent Systems, 21(2):10–19,
2006.

[2] Intel Corporation and Carnegie Mellon University. Dprsim: The dy-
namic physical rendering simulator. http://www.pittsburgh.
intel-research.net/dprweb/, 2006.

[3] Jean-Yves Girard. Linear logic. Theoretical Computer Science,
50(1):1–101, 1987.

[4] Seth Goldstein, Jason Campbell, and Todd Mowry. Programmable
matter. IEEE Computer, June 2005.

[5] B.T. Loo, T. Condie, M. Garofalakis, D.E. Gay, J.M. Hellerstein,
P. Maniatis, R. Ramakrishnan, T. Roscoe, and I. Stoica. Declarative
networking: language, execution and optimization. In Proc. of the
2006 ACM SIGMOD int’l conf. on Management of data, pages 97–
108, New York, NY, USA, 2006. ACM Press.

[6] S.R. Madden, M.J. Franklin, J.M. Hellerstein, and W. Hong. Tinydb:
an acquisitional query processing system for sensor networks. ACM
Trans. Database Syst., 30(1):122–173, 2005.

[7] Radhika Nagpal. Programmable Self-Assembly: Constructing Global
Shape Using Biologically-Inspired Local Interactions and Origami
Mathematics. PhD thesis, MIT, 2001. MIT AI Lab Technical Memo
2001-008.

[8] R. Newton, G. Morrisett, and M. Welsh. The regiment macroprogram-
ming system. In Proc. of the Int’l conf. on Information Processing in
Sensor Networks (IPSN’07), April 2007.

[9] P. Pillai, J. Campbell, G. Kedia, S. Moudgal, and K. Sheth. A 3d fax
machine based on claytronics. In IEEE/RSK Int’l Conf. on Intelligent
Robots and Systems, pages 4728–35, Oct. 2006.

[10] K. Whitehouse, C. Sharp, E. Brewer, and D. Culler. Hood: a
neighborhood abstraction for sensor networks. In Proc. of the 2nd
int’l conf. on Mobile systems, applications, and services, pages 99–
110, New York, NY, USA, 2004. ACM Press.

