
Declarative Programming for Modular Robots

Michael P. Ashley-Rollman, Michael De Rosa, Siddhartha S. Srinivasa,
Padmanabhan Pillai, Seth Copen Goldstein, Jason Campbell

Abstract— Because of the timing, complexity, and asyn-
chronicity challenges common in modular robot software we
have recently begun to explore new programming models for
modular robot ensembles. In this paper we apply two of those
models to a metamodule-based shape planning algorithm and
comment on the differences between the two approaches. Our
results suggest that declarative programming can provide sev-
eral advantages over more traditional imperative approaches,
and that the differences between declarative programming
styles can themselves contribute leverage to different parts of
the problem domain.

I. INTRODUCTION

Modular robot programming can be substantially more
challenging than normal robot programming due to:

• scale / number of modules
• concurrency and asynchronicity, both in physical inter-

actions and potentially at the software level
• the local scope of information naturally available at each

module
Recent declarative approaches such as P2[7] and

SAPHIRA[6] have shown promise in other domains that
share some of these characteristics. Inspired by those re-
sults we have been developing two modular-robot-specific
declarative programming languages, Meld and LDP. Both
languages provide the illusion of executing a single program
across an ensemble, while the runtime system of each lan-
guage automatically distributes the computation and applies
a variety of optimizations to reduce the net computational
and messaging overhead.

We have previously described a hole-motion based shape
planning algorithm that exhibits constant planning com-
plexity per module and requires information linear in the
complexity of the target shape (regardless of the number
of modules involved in the ensemble) [4]. Subsequently
we generalized this approach to extend its functioning to
other local metamorphic systems [5]. The latter, generalized
algorithm operates on subensembles (metamodules) to ac-
complish both shape control and resource allocation while
maintaining global connectivity of the ensemble.

In this paper we describe our progress implementing
this algorithm using both Meld and LDP. So far we have
found these declarative implementations to be substantially
more concise (2̃0x) and simultaneously more amenable to
optimization than was the case with an earlier imperative

This work was supported in part by NSF Grant#CNS-0428738, and Intel
Corporation.

Michael P. Ashley-Rollman, Michael De Rosa, and Seth Copen Goldstein
are in CSD at Carnegie Mellon University, 5000 Forbes Ave, 15213 {mpa,
mderosa, seth}@cs.cmu.edu

Siddhartha S. Srinivasa, Padmanabhan Pillai, and Jason Camp-
bell are at Intel Research Pittsburgh {siddhartha.srinivasa,
padmanabhan.s.pillai, jason.d.campbell}@intel.com

implementation. Meld has proven more effective at many
of the global coordination aspects of this algorithm, at effi-
ciently tracking persistent operating conditions, and at cop-
ing with (non-local) nonlinear topologies. LDP has proven
more effective at local coordination, sophisticated temporal
conditions, detecting local topological configurations, and
more generally, at expressing variable-length conditional
expressions.

We have chosen to present the planning algorithm (in
Section II) before the language descriptions (Meld in Sec-
tion III and LDP in Section IV), but some readers may prefer
to read the sections about the languages first. We compare
the languages using their respective implementation of the
planner in Section V.

II. SHAPE PLANNING

As a motivating example, we explore the problem of
distributed shape planning for the ensemble. We use an
extension of the shape change algorithm described in [5].
The algorithm produces a distributed asynchronous plan for
a group of modules to transform from a feasible start state
to a feasible goal state, while maintaining global connectiv-
ity throughout the execution of the plan. Furthermore, the
algorithm provides provable guarantees of completeness: if
there exists a globally connected path, it will be found. A
film strip of the planner in action is shown in Fig.1.

A. The planning algorithm

We define the system as a collection of states on a compact
workspace W embedded in a lattice L ∈ Rk, where each
state U is a labeling function of the aggregate using an
alphabet of labels A, i.e., U : W → A. For example, the
alphabet could comprise of homogeneous modules R and
empty space E.

States are modified by a rearrangement of their labels. The
algorithm uses the following rearrangement rule:

RE⇔ RR (1)

The rule states that any module has the ability to create
or destroy its neighbor. Dewey and Srinivasa[5] describe a
metamodule-based algorithm for combining the rules of any
local metamorphic system to produce a new metamodule
system that obeys the above rearrangement rule.

The planner produces a sequence of rearrangements to
reach the target shape while maintaining global connectivity.
At the beginning, all modules are in the start shape. During
the plan, modules that are not in the goal shape must
be removed and empty spaces in the goal shape must be
filled with modules. Adding modules cannot break global
connectivity, removing modules can. The planner removes
modules only after ensuring that their removal does not affect

Step 0 Step 15 Step 30 Step 45 Step 60 Step 75 Step 90 Step 105

Fig. 1. Metamodule-based Shape Planner

global connectivity. It achieves this by growing trees out of
connected sections of the ensemble and deleting modules
only at the leaves.

The plan starts with a seed module labeled F, which is in
the intersection of the start and goal shape. In our notation,
labels in the goal shape are marked with (ˆ) and those not in
the goal shape are marked with (ˇ). The module F recruits
every neighboring slot in the goal shape X̂ to become F.
It marks every neutral neighbor in the start state Ň as a
candidate for removal called P. Every P has a link → from
its parent and as long as the link is not broken, the P will
remain connected to the goal shape. Eventually, the P trees
will have no further space to expand, at which point, the
leaves can be trimmed without loss of connectivity. In Fig.1,
the start shape is indicated by the lighter colored modules,
the goal shape by the darker colored ones, and trees are
indicated by red arrows.

The above plan may be symbolized as follows:

FX̂ ⇒ FF, X ∈ {E,N,P}
FŇ ⇒ F→ P

PN ⇒ P→ P

P ⇒ E, if @X ∈ nbr(P) : N(X) or childof(P,X)

where ’nbr’ returns the neighbors of a module and ’childof’
returns true if P is the parent of X.

B. Resource allocation

While provably complete, the above planning algorithm is
oblivious to global constraints on the labels, which arise, in
this case, since the total number of physical modules needs
to be conserved. A resource allocator can be overlaid on top
of the algorithm to enforce label constraints, allowing and
disallowing creations and deletions of neighbors based on
availability, as well as distributing resources to where they
are needed. We modify Eqn.1 into two label conserving rules,
one for resource transportation and one for module creation
and deletion:

CD ⇔ DC

CE ⇔ DD

satisfying
num(C + E) = num(D + D) (2)

where ’num’ is a measure of resource.
A creator C has the ability to exchange resources with a

destroyer D. The creator can also produce a destroyer in an
empty neighboring space, turning itself into a destroyer in the

process. Likewise, two neighboring destroyers can coalesce
into a creator, leaving behind an empty space.

Since there is a global constraint on the total number of
C and D labels, a good resource allocator must distribute
them well, sending the D to regions of anticipated deletion
and the C to regions of anticipated creation. A simple,
highly suboptimal allocator is a randomizer which transports
resources by randomly switching adjacent C and D labels.
Note that no matter which resource allocator is used, the
algorithm is provably complete, but the better the allocator,
the faster the time to completion.

C. Optimizations

We describe three optimizations to the above algorithm.
While the optimizations do require some computational
and messaging overhead, they provide up to an order of
magnitude speedup.

The first optimization exploits two observations: that dele-
tions occur at the leaves of trees, and that it takes two
neighboring D to execute a deletion. As a result, we funnel
the D down trees to their leaves:

DC⇒ CD, only if D→ C (3)

The second optimization attempts to shorten tree length
as this will result in less total movement for the D to reach
leaves and cause deletion. Each P in the tree stores the
distance d to its root. Whenever a P encounters a neighboring
P with a larger d, it reparents the neighbor to be part
of its own tree and updates the d accordingly. The root
F also performs a similar operation. The optimization can
be summarized as:

FŇ ⇒ F→ P1

PdN ⇒ Pd → Pd+1

PdPe ⇒ Pd → Pd+1, only if d + 1 < e

FP̌d>1 ⇒ F→ P1

where superscripts denote distance from the root.
While the first optimization moves resources purposefully

once they are in the trees, the third optimization attempts
to attract resources to the roots of the trees by spreading a
gradient from the root:

P ⇒ P0

FP ⇒ F1P

XaXb ⇒ Xmin(a,b+1)Xb

// gradient: min aggregate over N
gradient(Module, N) :-

state(Module, Path), 1 = Path,N = 0.

gradient(Module1, N) :-
neighbor(Module1, Module2),
gradient(Module2, M),
N = M + 1,N <= 5.

Fig. 2. Example Meld code producing a bounded gradient for use in
optimization 3

where subscripts denote the strength of the gradient and X is
any module.

Destroyers descend the gradient:

DaCb ⇒ CaDb, only if a > b (4)

Local gradients usually suffer from two problems: local
minima and excessive messaging. However, our local gra-
dients have a nice self-correcting property. Once a tree is
completely deleted, its gradient dies, alleviating both the
above problems. The ease of cleanup of the local gradient,
described in the next section, illustrates both the advantages
of declarative programming and the differences between
Meld and LDP.

III. MELD

Meld [1] is a logic-based declarative programming lan-
guage that operates on “facts” using a collection of pro-
duction rules. A Meld program is a collection of rules for
deriving, or “proving,” new facts by combining existing ones.
Using a process called forward chaining, Meld starts with a
set of base facts (i.e., the execution environment), checks
them against the rules, and sees if any new facts can be
generated. These are then added to the collection of facts
and the process continues iteratively until all provable facts
under the given system of rules and base facts are generated.
This forward chaining and generation of facts constitutes the
execution of a Meld program.

The Meld logic itself makes no presumptions on the
meanings of facts, leaving this to the programmer. However,
in practice, it is useful to maintain certain conventions.
For example, a Neighbor(M1,M2) base fact generally
indicates that modules M1 and M2 are adjacent and are
capable of communicating with one another. Furthermore, to
make the language useful in a robotics context, the generation
of some facts can have side effects, permitting robots to
move, perform actions, or otherwise affect the physical
world. For example, the generation of a Move(M1,M2,A)
fact can cause module M1 to rotate about module M2 by the
specified angle A. Base facts reflect physical state, and facts
with side effects correspond to the sensing and actuation
primitives available on the system. Changes to base facts,
due to actuation, for example, will trigger the generation of
new facts as well as the deletion of old facts that can no
longer be proved.

Rules are of the form NewFact(X,Y,Z) :-
Fact1(...), Fact2(...), This defines

an instance of NewFact derived from the existing facts
Fact1, Fact2, All combinations of existing
facts that can match the right hand side of the statement
are applied to create the new facts. Expressions such as
X=A+B (see example in Figure 2) in the right hand side
of the statement serve to compute values for the new fact
from pieces of the existing facts, as well as to relate and
restrict the sets of facts that satisfy the rule. All standard
mathematical operations are supported in the expressions.
In addition, the language supports the concept of an
aggregation over all facts of a particular type, permitting
min, max, and summation operation across all instances of
a fact type.

The Meld paradigm permits the writing of code from a
global perspective, rather than from the view of the individual
robotic modules. This allows the programmer to focus solely
on the logic of the algorithms. Under the hood, the Meld
compiler distributes the data and the computation, allocating
some of the facts to each module. It automatically generates
the necessary messages to communicate just the facts that
are useful for the generation of new facts at neighboring
modules, as well as the messages to revoke them upon
deletion.

Meld need not run just at the level of individual modules;
it can readily run on top of abstract aggregates of modules
such as metamodules, given that the base facts and facts
with side-effects are matched to the characteristics of the
metamodule system. For the metamodule system used in the
rest of this paper, we define the following base facts:

• neighbor(M1, M2) indicates that M1 and M2 are
adjacent metamodules capable of communicating with
one another.

• position(M, L) indicates metamodule M is at lo-
cation L in the globally consistent coordinate system.

• vacant(M, L) says that location L is not occupied
by a metamodule

• resources(M, R) says that metamodule M has R
resources.

This assumes that the metamodule system provides location
information in some globally consistent coordinate system, in
addition to metamodule-level communications and adjacency
information. For this system, the set of facts with physical
side-effects are:

• create(M1, L) creates a new metamodule at loca-
tion L using resources from M1.

• destroy(M1, M2) causes M2 to be destroyed and
the resources to be absorbed by M1.

• give(M1, M2) transfers resources from M1 to M2.

These side-effects are the basic operations available in the
metamodule system described and used in the shape change
algorithm in Section II.

IV. LOCALLY DISTRIBUTED PREDICATES

Tools such as global predicate evaluation [2] allow a
programmer to encode queries over the state of an entire

distributed system, in distributed systems with a communica-
tions topology there exists another class of distributed pred-
icates, which we call locally distributed predicates (LDPs).
These are predicates over the local neighborhood of a par-
ticular node, bounded to a finite number of communication
hops.

Locally distributed predicates differ from global predicates
in two important respects. First, because LDPs do not en-
compass the entire distributed system, there may be multiple
matching subgraphs for a particular predicate. Second, LDPs
can describe not only the logical state of the entities in a
distributed system, but also their topological configuration –
a property that is inherently ignored by global predicates.
This topological sensitivity can be especially useful in writ-
ing programs for modular robots.

Using such locally distributed predicates we are develop-
ing a programming environment for modular robots, based in
part on our prior work on distributed watchpoints for modular
robot debugging [3]. LDPs allow a programmer to describe
the state configuration of a bounded subgraph of a distributed
system, and to specify actions that operate on portions of that
subgraph.

A. Program Structure

An LDP program consists of a number of predicates, each
of which includes in turn three components:

1) Named node list: Each predicate begins with a named
list of node variables. This list defines the size of the
matching subensemble (the connected subgroup whose
state satisfies the predicate’s logical expression).

2) Expression: Following the node list, each predicate
includes a single logical expression, composed from
a language including standard boolean and grouping
primitives, basic mathematical operators, topological
restrictions, and state variable comparisons. This ex-
pression is implicitly quantified over all connected
subgroups of length equal to the node list length.

3) Action(s): One or more action clauses, optionally
parametrized using named nodes or variables.

Topological restrictions in the expression take the form
of the function neighbor(a b), and indicate that the
two specified nodes are neighbors (that they share a com-
munications link). When multiple neighbor expressions are
combined using boolean operators, arbitrary node topologies
can be expressed. State variable comparisons allow for the
comparison of named state variables in one node against
constants, other local variables, or remote variables on other
nodes. Additionally, state variable comparisons may include
arbitrarily nested uses of the last and next temporal
modal operators, which provide access to the past and future
states of the node’s state variables.

Action clauses specify the action which will be taken when
the predicate matches. Actions can include such tasks as
setting state variables, moving modules, or calling custom
low-level routines. Named nodes from the nodelist, and
the corresponding state variables (including temporal modal
operators) can be passed as arguments in functions called

a b

slots

expression tree

and

=
a.state 0

and

=
b.inside 0

!=
b.state 1

Fig. 3. PatternMatcher Object

(a b);(a.state == 0) and (b.inside == 0)
and (b.state != 1);b.state = 1;

Fig. 4. Simple LDP Conditional for Propagating Path Search State

from action clauses. To prevent issues with locking and
synchronization, all actions for a particular instance of a
predicate must be executed on the same module. A full
formal syntax of an early version of this language, and
several examples of its use in distributed debugging, are
provided in [3].

B. Implementation

Predicate detection is accomplished through the use of
PatternMatcher objects similar to those we describe in [3](see
Fig.3). These mobile data structures encode a distributed
search attempt and travel between modules, collecting state
information until the expression they encode either matches
or fails. A match will trigger any actions attached to the
predicate, potentially requiring routing the successful Pat-
ternMatcher back to the node where the action is to be
performed.

C. Example of a Locally Distributed Predicate

In Figure 4 we show a simple LDP conditional, which
propagates the “looking for path” state. This conditional
finds all size-2 connected subensembles such that a is in
the desired shape, and b is outside the final shape and not
already looking for a path. Module b is then set to be looking
for a path.

V. COMPARING MELD AND LDP

We implemented the metamodule planner using both Meld
and LDP, and noticed that, even under the general umbrella
of declarative programming, the implementation of the plan-
ner was quite different for the two languages. The differing
syntax, semantic, and runtime support provided by the two
systems led to two very different sets of implementation
challenges. Below, we highlight a few of those challenges, to
give some flavor of the differences between LDP and Meld.

// if b has a parent and it is is not a,
// add b to the notChild set of a
(b,a); (b.parent != -1) & (b.parent != a.id);

a.$notChild.add(b.id);

// if b is final, add b to aś notChild set
(b,a); (b.state == 0) ;

a.$notChild.add(b.id);

// if a is in a path, and all of its
// neighbors are not its children, it can
// delete itself
(a); (a.state == 1) &

(a.$neighbors->size ==
intersect(a.$neighbors,a.$notChild)
->size);

a.destroy(a.id);

// if we are supposed to destroy ourselves (on a path) and we
// have no children, then itś safe to do so and we should go
// ahead and do so.
destroy(Module1, Module2) :-

state(Module1, Path), Path = 1,
neighbor(Module1, Module2),
resources(Module1, Destroy),
resources(Module2, Destroy),
Destroy = 0,
forall neighbor(Module1, N)

notChild(Module1, N).

Fig. 5. LDP (top) and Meld (bottom) code to evaluate a predicate on all
neighbors.

A. Evaluating Predicates Over All Neighbors

Meld and LDP approach the problem of evaluating a
predicate over all neighbors quite differently, as shown
in Figure 5. This code implements the test to see if the
particular module is a leaf, by checking that none of its
neighbors are its child, to see if it can be safely destroyed.
The LDP syntax does not have a construct to express a
predicate on all neighbors, so the LDP implementation
searches from the initiating module outwards, adding each
neighbor that satisfies the condition to a named set variable.
The size of this set is then compared with the number of
neighbors the module has. If these are the same, then the
predicate must hold for all neighbors. Although not needed
in this example, in general LDP code will need to remove
neighbors from the set when the condition no longer holds
for them, or arrange to empty the set regularly. Meld, on
the other hand, takes the list of neighbors and checks that
the fact holds for each one. Both methods accomplish the
same result of checking that the condition holds on every
neighbor. Both methods are also vulnerable to receiving
stale data from neighbors and thus inaccurately calculating
the state of the predicate.

B. Selecting Unique Optimal Parents

Another difference between Meld and LDP is the presence
of classical state. In LDP there are globally accessible state
variables that can be read or written arbitrarily by the rules
involved. This permits the programmer more flexibility and
makes it easy to maintain information such as the parent of
a node in a generated tree. Meld gives up this flexibility in

Fig. 6. Example DAG and one of several trees that can be constructed
from it

// parentDist: min aggregate over distance
type parentDist(module, min int).
parentDist(Module, Dist) :-

possibleParent(Module, _, Dist, _).

// parentID: min aggregate over ID
type parentID(module, int, min int).
parentID(Module, Dist, ID) :-

possibleParent(Module, _, Dist, ID).

parent(Mod1, Mod2) :-
possibleParent(Mod1, Mod2, Dist, ID),
parentID(Mod1, Dist, ID),
parentDist(Mod1, Dist).

Fig. 7. Meld code to select a single nearest parent

exchange for an event-based architecture and automated fact
deletion, the benefits of which are discussed in the next two
sections.

Since Meld gives up explicit state variables, an alterna-
tive mechanism is required in situations where we would
typically use one, such as selecting a single unique parent
when generating the P trees in the shape change algorithm,
i.e., constructing a tree from a set of relations that form a
DAG (see Figure 6). Without explicit state, we must make
use of aggregates to pick a single parent. As shown in
Figure 7, we first use an aggregate to find the minimum
distance of any possibleParent such that we create the flattest
possible tree. This aggregate gives us a parentDist fact
which we can combine with possibleParent facts to give us
parents at minimum distance, but if we have two or more
parents that are equidistant from the final module we will
end up with multiple parents. We must, therefore, use a
second minimization aggregate over the IDs of the parents
to uniquely select one parents at each distance, providing a
set of parentID facts.

After both aggregates have been applied, the parentDist
fact specifies a single optimal distance and the parentID facts
specify a single possible parent for each distance. These can,
therefore, be combined to specify a single unique parent. This
method of identifying a single parent is clunky and work is
being done to find a better solution.

C. Polled Predicates and State Change

LDP detects conditionals using a polled approach, where
new searches are started at every “tick”. This causes LDP
to repeatedly proceed with searches even if no state has
changed. For example, a simple predicate that spreads the
final label to neutral neighbors in the target region will
wastefully propagate pattern matchers from all final state

// predicate with no guard
(a,b); (a.state == 0) & (b.inside == 1);

b.state = 0;

// predicate with previous-state guard
(a,b); (a.state == 0) & (b.inside == 1)

& (a.state != a.last(1).state);
b.state = 0;

Fig. 8. Preventing needless execution of LDP conditionals with state guards

TABLE I
MESSAGING OVERHEAD FOR LDP AND MELD PROGRAMS (200

METAMODULES, 100 TIMESTEPS)

Program
LDP

Meld
No Guards Guards

Single Condition 13311 152 172
Full Planner 349514 193204 202117

Fig. 9. A gradient after the root has been deleted. With explicit state,
as in LDP, stale gradient information remains until explicitly removed (a).
With Meld (b), the gradient information is neatly deleted, i.e., unproved,
automatically.

modules every tick. To prevent this, we can add additional
clauses which stop a search from propagating if there has
been no change in local state since the last timestep (Figure
8). The statistics in Table I show that adding the guard
condition shown in Figure 8 reduces messaging for that
particular condition by 98.8%, and adding guard conditions
to all relevant conditions in the metamodule planner reduces
message overhead by 42.3%. Meld uses event-driven pro-
cessing only when some facts change, and thus does not
suffer this problem.

D. Retracting Expired Information

As LDP operates by setting state variables, we must ex-
plicitly delete any state which is no longer valid. An example
of such state is the deletion gradient which moves destroyer
metamodules away from the ensemble’s surface, described
in Subsection II-C. This gradient must be removed after
deletion finishes, or destroyers may be incorrectly routed
(see Figure 9). We do this by propagating the originator of
the gradient along with the gradient value, and having the
originator broadcast a deletion message once the gradient is
no longer needed. In contrast, Meld manages the deletion
of facts automatically, and thus the gradient is deleted at all
points merely by retracting the fact that the originator exists.

VI. DISCUSSIONS

We have described the implementation of a new shape
planning algorithm in two new declarative programming
languages, MELD and LDP. Both languages allow for a
natural expression of our new shape planning algorithm,
though the example also serves to highlight some of the
similarities and differences between the two.

In terms of similarities, Meld and LDP are both well
suited to tracking persistent operating conditions, evaluating
predicates over all neighbors, and expressing variable-length
conditional expressions. In terms of differences, LDP’s ex-
plicit state model lends itself well to managing persistent
state (e.g., first-seen, best-ever, or any-of clauses), whereas
Meld’s implicit state approach is better suited to managing
reactive, dynamic state (e.g., maintaining gradients fields in
presence of motion).

In either language, alternative implementations of a given
primitive can have widely varying efficiency results. For
instance, some Meld programs may needlessly rederive facts,
whereas other programs may produce the same end result
with less rederivation. Our future work will explore how
to maximize the efficiency of commonly encountered dis-
tributed primitives in either language.

Given Meld and LDP’s similarities and differences, a
logical suggestion would be to combine the two in a hybrid,
ideally preserving the strengths from both. Unfortunately
the divergent state models make this a challenging task.
For instance, Meld’s deletion unproves facts which depend
upon what is being deleted, but it is not obvious how to
undo changes to state variables. Further future work may
find alternative approaches that combine the advantages of
both languages. In the meantime, we are beginning to use
both together at a coarser granularity, implementing entire
modules in one or the other and interfacing those modules.

REFERENCES

[1] M. Ashley-Rollman, S. Goldstein, P. Lee, T. Mowry, and P. Pillai. Meld:
A declarative approach to programming ensembles. In Proceedings of
the IEEE International Conference on Robots and Systems IROS ’07,
2007.

[2] Bernadette Charron-Bost, Carole Delporte-Gallet, and Hugues Faucon-
nier. Local and temporal predicates in distributed systems. ACM Trans.
Program. Lang. Syst., 17(1):157–179, 1995.

[3] Michael De Rosa, Seth Copen Goldstein, Peter Lee, Jason Campbell,
and Padmanabhan Pillai. Distributed watchpoints: Debugging large
multi-robot systems (in preparation). International Journal of Robotics
Research, 2007.

[4] M. DeRosa, S. Goldstein, P. Lee, J. Campbell, and P. Pillai. Scalable
shape sculpting via hole motion: Motion planning in lattice constrained
modular robots. In Proceedings of the IEEE International Conference
on Robotics and Automation ICRA ’06, 2006.

[5] Daniel Dewey and Siddhartha S. Srinivasa. A planning framework for
local metamorphic systems. Technical Report CMU-RI-TR-XX, The
Robotics Institute, Carnegie Mellon University, 2007.

[6] K. B. Lamine and L. Kabanza. Reasoning about robot actions: A model
checking approach. Advances in Plan-Based Control of Robotic Agents,
pages 123–139, 2002.

[7] B.T. Loo, T. Condie, M. Garofalakis, D.E. Gay, J.M. Helle rstein,
P. Maniatis, R. Ramakrishnan, T. Roscoe, and I. Stoica. Declarative
networking: language, execution and optimization. In Proc. of the 2006
ACM SIGMOD int’l conf. on Management of data, pages 97–108, New
York, NY, USA, 2006. ACM Press.

