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Abstract— Modular robotic systems with no fixed mechanical
contacts have the ability to adopt and reconfigure very rapidly,
but are very difficult to control dynamically. Moving module

solely with electro-magnetic or -static forces can lead to un-
wanted slipping or even loss of contact. This paper presents
a strategy to design controller for such modules based on the
limits derived by combining the contact constraints and the
actuator saturation. We demonstrate the design of a simple but
effective controller for two module motions. We also present
guidelines for the design of the modules based on the controller
limitations.

I. INTRODUCTION

A metamorphic system is comprised of an ensemble of

modular units that are connected to one another. Mod-

ules are usually capable of motion relative to each other,

thereby moving the entire system. Metamorphic systems

are especially attractive due to this modular construction

as they can achieve a rich set of complex motions by the

collective actuation of the individual simple modules. Since

reconfiguration of the entire system is achieved by the local

motion of numerous individual modules about each other, the

design of robust mechanisms and algorithms for local motion

are crucial for the function and efficiency of the system.
Physical interactions between modules are threefold: when

not moving, individual modules need to stay connected to

each other; modules must exert forces on each other to cause

motion; and modules in motion must eventually stop and

latch onto other modules. Traditionally, these interactions

have been realized by means of latches which comprise

of mechanical structures that are actuated to engage and

disengage modules, such as the MTran [11], ATran [6],

CORNO [8] and Polybot [18] systems. Latching mechanisms

have the advantage of a guaranteed strong mechanical lock

once engaged. However, they suffer from a few problems.

First, latches comprise of, sometimes intricate, moving parts

that need to be manufactured and assembled for each module.

Second, repeated actuation can lead to wear and tear and

eventual failure of the latches. Third, latches merely connect

and disconnect thus needing additional mechanism to actuate

module movements.
Claytronics [4] envisions million-module self reconfig-

urable robot ensembles capable of reproducing moving,

physical 3-D shapes. To facilitate module manufacturing

and speedy reconfiguration, this system uses modules which

bond to each other without engaging any mechanical latches

or hooks [9]. At a macro-scale Claytronic modules, called

catoms, employ a number of electromagnets arranged around

the spherical or cylindrical module as depicted in Figure 1(a).

At the micro-scale we envision actuation using a similar

arrangement of electrostatic actuators. Latch-less systems

offer numerous advantages. First, the latching mechanism

has no moving parts as engagement and disengagement are

achieved by just changing the polarity of the electromagnets.

Second, ‘Force-at-a-distance’ mechanisms are used not only

to adhere but also to actuate the modules by using adjacent

electromagnets. Third, each electromagnet provides a con-

tinuous area of contact points between modules.

The price paid for all of the above advantages is in

algorithmic complexity. The lack of fixed contact between

the modules poses the challenging problem of modules

much more likely to slide past each other, or worse, lose

contact and disengage as they move. Successful motion, thus,

requires the careful orchestration of electromagnetic forces at

multiple contacts, in addition to motion planning challenges.

Another issue with latch-less, cylindrical, magnetic modular

robots is that we do not have the luxury of velocity-controlled

mechanical joints, independent module actuation, or self-

limiting step-wise actuation mechanisms, and must consider

dynamics in all actuation.

In this paper we present a methodology to design control

strategies to achieve desired module motions without slip

or loss of contact. There are three important goals of this

paper. First, we demonstrate a strategy to combine the contact

constraints, namely, no-slip or no loss of contact condition

and the actuator limits, namely, the strength of magnets to de-

termine the limits for controller design. Secondly, we demon-

strate design of a simple but effective controller using these

limits. And finally, we demonstrate how different design

choices affect these controller limits and thus lead to useful

design guidelines. Tools exist in the mobile robotics [3] and

the manipulation [17] literature for control synthesis under

dynamic contact constraints such as slip and loss of contact.

In this paper we present the adaptation of these tools to

metamorphic systems. Specific challenges such as modeling

the magnetic forces, modeling the ground friction forces are

addressed here.

We focus our discussion on the reconfiguration of an

ensemble of cylindrical modules in a planar lattice. Here,

a module moves from one lattice position to an empty

position by rolling against a neighbor. This is an important

class of movement is used as the base motion primitive



for a variety of scalable, distributed shape reconfiguration

and planning algorithms, including hole motion [13] and

templated hierarchical planning [2] as shown in Figure 3.

To make the analysis of a catom rolling against a large

ensemble tractable, we use a two catom model, fixing one

as immovable, closely approximating the neighbor attached

to a large mass of other catoms (Figure 1). We separately

analyze the stopping condition when a moving catom comes

to rest against neighbors in its new lattice position, ensuring

the impact does not cause slipping or loss of contact at the

moving interface. These analyses fully define the dynamics

of lattice-style reconfiguration of planar, cylindrical catoms

employing force-at-a-distance actuation and no mechanical

latching mechanisms.

Electromagnets

(a) An overhear view of two
Catoms

Stator Rotor

magnets

(b) Sketch of two interacting
Catoms

Fig. 1. Two interacting Catoms: a stator Catom fixed to ground and a
rotor Catom revolving around stator.

Fig. 2. Catom flies off: as we try to control the rotor motion around the
stator, the rotor flies off at high velocity.

(a) Sketch of hole motion with
catoms [13]

(b) Sketch of kinematic plans
with catoms [2]

Fig. 3. Examples of catom motion plans.

In Section II we present the detailed model of two in-

teracting catoms including the magnetic force model. We

also present a mathematical condition to check for the

slipping between two catoms. In the same section we also

present a simple control strategy for two interacting catoms

which does not give good results. In Section III we present

a methodology to combine the friction cone limits with

magnetic force limits and we also present control strategies

based on the combined limits. In Section III-D we present a

simple but effective controller for two catom motion based

on the strategies presented in III. In Section IV we present

some general design guideline based on the controller limits.

Finally, in Section V we conclude and present ideas for future

work.

II. TWO INTERACTING CATOMS

Figure 1(a) shows the hardware of two interacting catoms

and Figure 1(b) shows the corresponding cartoon. The catom

motions are achieved by modulating the strength of the

magnets around the periphery of the catoms. For the purpose

of our analysis, we assume that the magnets are at a depth

of dm from the catom surface.

The analysis of the motion of one catom in the ensemble

can be simplified by assuming that the ensemble is suffi-

ciently large so that it does not move in response to the

motion of the single catom. In that case, the problem can

be simplified to that of two interacting catoms with one of

the catoms fixed to ground (representing the ensemble) and

other other catom free to move in the plane. We want to

design a control strategy to get the moving catoms (rotor)

revolve around the fixed catom (stator) by a desired angle.

Since there is no latching mechanism that secures the two

catoms to each other, there is a possibility of slip between

the catoms, which is undesirable as it leads to misalignment

between the magnets, or worse, there is a possibility of

loss of contact between the catoms. We want to design a

controller to rotate the rotor around the stator without slip

or loss of contact.

A. Dynamics of Two catoms

We derive they dynamic equations of planar motion of two

interacting catoms. We assume a Coulomb friction model at

the contact between the two catoms and also at the surface

contact between the ground and the rotor. We also assume

that the catoms are aligned at the start of motion. Our goal

is to keep them aligned throughout the motion.

The physical parameters for the catoms are based on the

hardware system and they are: mass, m = 0.2Kg, catom

radius, R = 2cm, magnet radius, Rm = 0.8R, gravity, g =
9.8m/s2, number of magnet, nm = 18, coefficient of friction

between the rolling catoms, µc = 0.5, coefficient of friction

between the ground and the catom µg = 0.5, angular distance

between the magnets, φ = 2π
nm

The condition that the catoms must not slip or lose contact

can be expressed in terms of a friction cone constraint. This

idea is used previously by Srinivasa et al. [16] for robotic
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Fig. 4. Force vectors in the system two interacting catoms. Zoomed-in
view shows two active pair of magnets: the normal force and the tangential
force are at the point of contact C and angle is θ.

manipulation problem and also by Deshpande and Luntz [3]

for mobile robot applications. The basic principle is that,

to avoid slipping, the resultant contact force, at the point of

contact C between the catoms, must lie inside a cone defined

by angle α where α = arctan(µc); µc is the coefficient of

friction between the rolling catoms.
The system of two interacting catoms with one catom

fixed to ground has one degree of freedom (DOF) and we

can define it as the angle θ that the line joining the two

centers makes with the horizontal. To check for the no-slip

condition we need to determine the contact forces between

the two catoms and these forces depend on the applied

magnetic forces as well as the dynamics of catoms. One

way to bring these forces into the analysis is to introduce

extra degrees of freedom in analysis and then constrain

these extra degrees of freedom. This is similar to the idea

of Lagrange Multiplier [5] or the idea of pseudo robots

introduced by [3]. Since we want to determine the normal

and the tangential forces at the point of contact, to check for

friction cone constraint, we introduce two extra degrees of

freedom: x and y: which are the x-location and the y-location

of the center of mass of the rotor, respectively. Thus the

set of generalized coordinates is: q = [x, y, θ]T . We derive

the equations of motions of this system using the Kane’s

dynamics methods[7] and they are:

M q̈ = Gcfc + Ge1Fd + Ge2Fm (1)

subject to the rolling contact constraint:

GT q̇ = 0

GT =

[

1 0 2R sin(θ)
0 1 −2R cos(θ)

]

, (2)

and fc is the contact force matrix fc = [Nc, Fc]
T . We have

defined a rotating frame A with unit vectors â1, â2, â3 such

that â1 is aligned with the line joining the two centers. Thus,

â1 = cos(θ)̂i + sin(θ)ĵ and â2 = − sin(θ)̂i + cos(θ)ĵ. The

contact force vectors are: Nc = Ncâ1 and Fc = Fcâ2. Fd

is the reaction force as the rotor slides along the ground. We

model it as a force applied at the center of the rotor, with

magnitude Fd = µgSign(θ̇)mg, in the direction opposite to

the direction of motion: Fd = Fdâ1. M is the mass matrix

as defined below:

M =





m 0 0
0 m 0

0 0 mR2

2



 , (3)

Gc is the grasp map of the contact forces

Gc =





cos(θ) − sin(θ)
sin(θ) cos(θ)

0 R



 , (4)

and, Ge1 and Ge2 are as follows:

Ge1 =





sin(θ)
− cos(θ)

0



 , (5)

Ge2 =





cos(θ) cos(θ)
sin(θ) sin(θ)

Rm sin(φ − θ) Rm sin(θ)



 . (6)

1) Magnetic Force Model: Our magnetic force model is

based on the assumption of two point charges generating

the magnetic field. We model the magnitude of the magnetic

force between two magnets of the two catoms as inversely

proportional to the cube of the distance between the magnets

and the direction of the force along the line joining the two

magnets. If r is the vector connecting two magnetic points,

then

Fmi = Fmir̂i =
KmaxKc

||ri||3
r̂i (7)

, where Kmax is a magnet constant and for our hardware

system is equal to 10−5 N-m3 and Kc is the control

parameter for controlling the magnet force. Figure 4 shows

the magnet forces at point a1, a2, b1 and b2. The dotted

vectors represent the forces between the cross magnet pairs.

The vectors of these forces Fm are derived as follows:

r11 = d(a1b1)â1 = [2R − 2Rm cos(φ − θ)]â1,

r12 = d(a1b2) ˆa1b2 = [2R − 2Rm cos(φ − θ)] ˆa1b2,

r11 = d(a1b1) ˆa2b1 = [2R − 2Rm cos(φ − θ)] ˆa2b1,

r22 = d(a2b2)â1 = [2R − 2Rm cos(θ)]â1,



Fm =

[

Fm1

Fm2

]

= DmatKmat, (8)

where,

Dmat =

[

Kmax

||d(a1b1)||3
Kmax

||d(a1b2)||3
Kmax

||d(a2b1)||3
Kmax

||d(a2b2)||3

]

,

Kmat =

[

Kc1

Kc2

]

. (9)

III. CONTROL SYNTHESIS FOR CATOM MOTION

Based on the model of motion dynamics for two catoms

we want to design controllers to achieve desired motion

of the rotor from the initial state to the final state. While

following the motions we want to make sure that catoms

do not lose contact and do not slip. These conditions can

be represented in terms of kinematic constraints (given by

Equation 2) and constraints on the contact forces at point

C. Introduction and constraining of degrees of freedom as

shown in the earlier section does allow for determination the

contact forces fc under the dynamic conditions.
One strategy for designing controller is to design feedback

control law for the desired angle of revolution of the mover

and then employ a check in terms of kinematics and contact

cone constraints for each time step. We employed such

strategy with a simple PID controller but it failed to a keep

the contact forces inside the friction cone limit. We believe

that the reason for the failure of such a control strategy is that

we only react when cone constraints are close to be violated

and there is no consideration for the speed at which cone

constraint limits are approached.
To this end we propose a novel strategy. Our idea is

to combine the kinematics constraints and contact force

constraints, determine a set of allowable motions based on

the combined constraints and then design a control law that

executes desired motions from the allowable motions. This

idea is adapted from the analysis presented by Srinivasa et

al. for the robotic manipulation problems [16], [17] and by

Deshpande and Luntz for the mobile robot applications [3].
In this section we start out by showing a strategy to com-

bine kinematic and contact force constraints. We combine

the constraints by first transforming all the constraints in the

catom acceleration space. This results in a allowable motion

region represented in the catom ‘angle - angular velocity -

angular acceleration’ space. Lets consider the equation of

motion of the system:

M q̈ = Gcfc + Ge1Fd + Ge2Fm. (10)

We can re-write it as:

q̈ = M−1Gcfc + M−1Ge1Fd + M−1Ge2Fm. (11)

The kinematic constraints for this system are: GT q̇ = 0.

Taking the time derivative of the kinematic constraints give:

ĠT q̇ + GT q̈ = 0

Substituting q̈ from 11 gives:

ĠT q̇ + GT (M−1Gcfc + M−1Ge1Fd + M−1Ge2Fm) = 0

ĠT q̇ + GT M−1Ge1Fd

+GT M−1Ge2DmatKmat = −GT M−1Gcfc (12)

Equation 12 gives the relationship between the contact forces

fc and actuation forces defined by [Kc1, Kc2]
T for a given

{q, q̇}. Lets define G̃ := GT M−1Gc and we can re-write

Equation 12 as1:

−G̃−1(ĠT q̇ + GT M−1Ge1Fd +

GT M−1Ge2DmatKmat) = fc (13)

So far we have combined the kinematic constraints on the

catoms with the dynamics of the catoms and we have fc
explicitly appearing in Equation 13. Now we can impose the

‘no slip’ and ‘no loss of contact’ conditions by constraining

fc determined as above. As mentioned earlier we set up a

friction cone constraint which says that is that fc must lie

inside the friction cone defined by the coefficient of friction,

and represented by F , at the point of contact C i.e. fc ∈ F .

This constraint can be represented mathematically as follows.

A. Representation of Friction Cone Constraint

The cone condition can be specified mathematically as

what is called the ‘face normal representation’. The 2D

version of this representation utilized two unit vectors n1

and n2 each normal to one edge of the 2D friction cone.

The friction cone satisfaction condition for a contact force

vector (e.g. g) is then set up as follows:

F = {g : N.g ≤ 0, N = [n1 n2]T } (14)

Thus the friction cone condition fc ∈ F can be written as

N.fc ≤ 0, where

N =

[

− sin(α) cos(α)
− sin(α) − cos(α)

]

,

α = arctan(µc), and µc is coefficient of friction at the

contact point C.

B. Limits on Kcs and θ̈

We can incorporate the face normal representation of the

friction cone condition, N.fc ≤ 0, with Equation 13 as

follows:

−NG̃−1(ĠT q̇ + GT M−1Ge1Fd +

GT M−1Ge2DmatKmat) ≤ 0 (15)

Above equation gives us the linear inequalities in terms of

Kc1 and Kc2 corresponding to the friction cone condition.

We can combine these with the min-max limits on Kc1 and

Kc2 to determine the region of allowable values. Figure 5

shows intersection of the min-max limits of Kcs with

inequalities represented by lines L1 and L2 for θ = 0.2
rad, θ̇ = 1 rad/sec. The shaded polygon in the figure is the

allowable region of the Kc1 and Kc2 values.

1Note that it is proved that under the condition of no internal forces,
which is true in our case, G̃ is invertible [15].
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Srinivasa [15] has proved that such a region must be

convex and hence the extremities, Kcextreme, of this region

are at the vertex points of the shaded polygon as shown by

the black dots in Figure 5. We can determine the allowable

region polygon and the extremities of the allowable region:

Kcextreme, for the range of interest of {q, q̇}. Once we

know Kcextreme then we can determine fcextreme using

Equation 13 and then can determine q̈extreme using Equa-

tion 10 for the range of interest of {q, q̇}. Figure 6 shows

the plot of the upper and lower limits on θ̈ for range of

values of θ and θ̇. Since these regions are determined by

incorporating kinematic constraints, contact force constraints

and the actuator limits any value of {θ, θ̇, θ̈} inside the region

encompassed by the two surfaces is a feasible motion for the

system.
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Fig. 6. Limits on acceleration (θ̈) based on the actuator limits and no-slip
condition at various values of rotation angle (θ) and velocity (θ̇).

C. Limits on θ̈ and Control Synthesis

Determination of θ̈ limiting surfaces as shown in Figure 6

is extremely useful because based on these limiting surfaces

the controller design can be carried out in two stages:

design of a trajectory from the start to the goal inside the

allowable region, and then design of a feedback controller

to follow such trajectory. Optimal control design techniques

such as Dynamic programming [1] can be employed to

design optimal trajectories going from the start to the goal

in the allowable region in the {θ, θ̇, θ̈} space.

Also these limiting surfaces can be pre-computed for the

given design parameters of the catoms and can be pre-

fed in the catom controllers. This will drastically reduce

the algorithmic complexity which would otherwise arise if

we tried to incorporate the dynamics of the catoms in the

controller design.

1) Feasibility of a Trajectory: Determination of feasibility

of a trajectory from a start location to an end location in

θ-θ̇-θ̈ space under the combined constraints represented by

the limiting surfaces as shown in Figure 6 is an interest-

ing problem. Many researchers have presented methods to

determine feasibility of trajectories from start to goal under

constraints in 2D and 3D spaces [10], [12], [14]. For the

sake of simplicity we use a sufficiency test for our example.

We initiate a trajectory from the start location (θ0, θ̈0) with

maximum allowable θ̈max at that location. And we initiate

a backward trajectory from the goal with negative minimum

allowable −θ̈min at that location. If these two trajectories

intersect, while satisfying the combined constraints repre-

sented by θ̈min-θ̈max surfaces, then we know that there is at

least one trajectory that reaches from start to goal. Figure 7 a

sketch of phase plot with start and goal locations. The arrows

at each location represent the acceleration limits based on

combined constraints. Figure shows a trajectory starting

from start with maximum allowable acceleration and another

trajectory from reverse of minimum allowable acceleration.

These trajectories satisfy min-max acceleration constraints

by staying within the bounds represented by the arrows and

intersect, which is a sufficient condition for existing of a

feasible trajectory.

angle

V
e
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c
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y

start goal

Fig. 7. Determination of feasibility of a trajectory from start to goal under
acceleration constraints.

D. Controller Design and Simulation Results

We have designed a simple control strategy for the two

interacting Catom model using the θ̈ limit plot. As mentioned

earlier, once we have the θ̈ limit plots the controller design

can be divided into two parts: design of a feasible trajectory

and then design of a controller to follow this trajectory. We

want to design a controller to revolve the rotor from one
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(d) θ̈ tracking

Fig. 8. Performance of a simple feedback controller which is designed
using the allowable volume in the phase space. Controller tried to follow a
trajectory given by 8(a). Figure shows good tracking performance and also
satisfaction of combined constraints

pair of magnets to the next pair, that is, by 2π
nm

radians. To

determine a trajectory, we forward simulate from the start

{θ = 0, θ̇ = 0} with θ̈max at the start and we simulate

backward from the goal {θ = 2π
nm

, θ̇ = 0} with θ̈min at the

goal. Our trajectory then is the forward trajectory from the

start and then switch over to the trajectory from the goal at

the point of intersection. Figure 8(a) shows the trajectory.

We then design a simple PID controller based only on the

angle feedback to follow along this trajectory.

Figure 8(b) and 8(c) the tracking performance of θ and θ̇,

respectively. Figure 8(d) shows variation of θ̈ and θ̈ min-max

limits as θ and θ̇ values vary. Note that θ̈ stays well within

the min-max limits thus showing that such controller will

work under the given actuator limits as well as the no-slip

condition. The goal of this control design exercise is not to

present an optimal controller but to demonstrate that once

we have the θ̈ limits from the combined constraints then the

controller design can simplified drastically.

E. Stopping Conditions

As a catom moves around an ensemble it may encounter

another catom in its path which will result in an impact. We

can check for no slip and no loss of contact conditions under

impact by adding the a term representing the impact force in

Equation 10. Then we can carry out the analysis as shown

above and friction cone condition at contact points between

the collided catoms and the ensemble.

IV. DESIGN GUIDELINES BASED ON COMBINED

CONSTRAINTS

Another important advantage of combining constraints and

representing the constraints in the form of min-max surfaces

as shown in Figure 6 is that we can use these constraints

to derive general guidelines for the catom design. The shape

and the size of the θ̈ plot depends on the physical parameters

of the catoms such as the radius, mass, number of magnets,

magnet strength etc. and in this section we present some

interesting dependencies of θ̈ limits on the parameter values.

Although we do not have analytical relationships for such

dependencies we can still determine few useful trends based

variations in the θ̈ limit plots.

Only the volume inside the two surfaces in θ̈ limit plot is

allowable under the no-slip and actuation constraints. Hence,

in general, the bigger the volume the better it is for catom

motion planning. Figure 9 shows θ̈ limit plots as we vary

the number of magnets and the magnet strength.

• One of the most interesting observations is that as

we increase the number of magnet on the catoms the

allowable volume increases at first but after a certain

value of nm the volume goes down again. This is

because there is a trade-off between requirement of

normal force and requirement of torque on catoms. This

leads to a ‘sweet spot’ in terms of number of magnets

for best catom performance.

• As we reduce the magnet strength the min-max surfaces

move closer and at high values of θ̇ start to crop into

each other thus reducing the allowable speed. Thus there

is a maximum allowable θ̇ associated with given nm and

Kmax.

• At nm = 6 and at low value of magnet strength (

Kmax < 10−6 N-m3) the min-max surfaces close in,

so much so that there is no feasible value of θ̈ at θ = 0
and θ = 2π

nm

. Thus it is impossible to move from one

magnet pair to the next without loosing contact. This

sets a critical lower limit on the number of magnets.

This preliminary analysis shows that our method can be

useful to determine the relation between the design parame-

ters to the control limitations. Currently, we are working with

hardware development team to use these design guidelines

for the design of newer versions of the catoms.

V. CONCLUSIONS

In summary, we present a technique for combining the

magnet, friction and dynamics constraints in a metamorphic

system. The result of the technique is a feasible volume in

phase space which encapsulates all of the constraints. We

have shown that this volume can be used both to construct

motion controllers for the motion of the modules, as well

as to compute limits of the design parameters within which

feasible motion controllers for the modules must exist.

Furthermore, since this volume, or a parametric represen-

tation of the maximal and minimal surfaces, is identical for

each module (if the modules are identical), it can be stored
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Fig. 9. Plots showing acceleration limits (θ̈) for different as angle (θ) and velocity (θ̇) are varied. The plots show interesting trends in response to change
in nm and Kmax values and some general design guidelines can be established based on these trends.

within each module, providing a compact representation of

all of the constraints. This representation can be used both for

control and for the generation of online dynamically feasible

plans.

In the future, we would like to extend our controller

design to include robust disturbance rejection, as well as a

tolerance to parameter variation. We would also like to relax

the assumption of full state observability to a model where

the module can only sense a part of its state, for example,

its orientation or some coarse measure of it. Furthermore,

our controller is designed to provide fairly simple clockwise

or counterclockwise rotations to the module, which can be

concatenated to construct a dynamic plan. In the future, we

would like to incorporate a richer set of possible actions, like

the throwing, catching and sliding of modules to construct a

wider variety of dynamic plans.
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