Planar Catoms
Modular Robots using Magnetic Force Effectors

Carnegie Mellon University
Brian Kirby
Burak Aksak
James F. Hoburg
Todd C. Mowry
Seth Copen Goldstein

Intel Research Pittsburgh
Casey Helfrich
Padmanabhan Pillai
Jason D. Campbell
Motivation

• Investigated as part of the Claytronics Project
• How can robotic modules be scaled down in size and up in quantity?

Ensemble Axiom

Each module contains the minimum functionality necessary to contribute to the ensemble as a whole.
Hardware Design Criteria

• Cylinders on a plane
 – Try 2D before 3D
• No moving parts
• Onboard control
 – Actuation
 – Planning
 – Communication
• As small as feasible
Ensemble Motion

(Actual Speed)
Planar Catom Modules

- Electromagnets
 - No moving “parts”
 - Relative motion only
- Two rings of 12 magnets, 24 total
 - Lattice flexibility
 - Intermediate configurations
- Torque
 - 12 mN-m at motion start
 - 200+ mN-m at motion end
- 100g 45mm diameter modules
Engineering Challenges

Typical Stepper Motor
- Concentric
- Simple
- Negligible
- Negligible
- Hard

Stator/Rotor
- Switching
- Friction
- Misalignment
- Motion Constraints

Planar Catoms
- Adjacent
- Complex
- Plane Surface
- Potentially Fatal
- Soft
Controlling Magnet Arrays

- Electromagnets require up to 30W in brief bursts
- Onboard power switching must fit 45mm diameter
- PWM control for torque/heat management
 - High power for actuation, low power for “locking”
 - Limiting factor is heat dissipation in coils
- Packing limitation allows simpler 1-of-4 muxing

Packed modules

12 magnet driver array, top / bottom
Sensing and Communications

• Key for coordinating all actuation
• IR emitter/detector array
 – localization
 – local communications
• 802.15.4 wireless serial
 – Basic module maintenance
 – Ties into DPRsim to drive hardware

…but what about the magnets?
Electromagnetism Revisited

• Not only actuation – a multipurpose effector
• Inductive Coupling Allows:
 – Local Communication
 – Neighbor Sensing
 – Power Transfer

Most of our ensemble contributions can be made with an array of identical features

Holds true for Electrostatics as well
Conclusions

• Modules with no inherent movement capability capable of ensemble motion

 Possible

• An array of identical magnetic effectors can contribute most ensemble functionality

 Scalable
Acknowledgements

Darpa
NSF
Intel Research Pittsburgh

Questions?