Randomized Algorithms: Closest Pair of Points

Slides by Carl Kingsford

$$
\text { May 2, } 2014
$$

Based on Khuller and Matias

The problem

Problem. Given a set of points $S=\left\{p_{1}, \ldots, p_{n}\right\}$ in the plane find the pair of points $\left\{p_{i}, p_{j}\right\}$ that are closest together.

Estimate

Let $\delta(S)$ be the smallest distance in S. Suppose you had a good estimate b of $\delta(S)$ such that:

$$
b / 3 \leq \delta(S) \leq b
$$

Then you could find the closest points in $O(n)$ time as follows. Create a grid of boxes of side-length $=b$:

Compare each point to the points in its neighborhood.

Why $O(n)$?

The closest pair of points lie in each other's neighborhood of the b-grid:

Each grid box contains ≤ 25 points:

Largest distance inside of a smaller grid point $=\frac{\sqrt{2}}{5} b<\frac{b}{3} \leq \delta(S)$.

Randomized approach to estimating b

While S is not empty:

1. Choose random point $x_{i} \in S$.
2. Compute $d\left(x_{i}\right):=$ smallest distance from x_{i} to any other point currently in S
3. For all points $x \in S$: If

$$
\begin{aligned}
& \text { far } d(x)>d\left(x_{i}\right) \rightarrow \text { throw out } x \\
& \text { close } d(x) \leq d\left(x_{i}\right) / 3 \rightarrow \text { keep } x \\
& \text { medium } d(x)>d\left(x_{i}\right) / 3 \text { but } d(x) \leq d\left(x_{i}\right) \rightarrow \text { do what you } \\
& \text { want. }
\end{aligned}
$$

Return $b=d\left(x_{i}\right)=d\left(x^{*}\right)$ where $x^{*}:=$ the last x_{i} chosen before S became empty.

Random point sets the scale

Implementing Step 3

Build a $d\left(x_{i}\right) / 3$-grid.
Step 3 Rule: A point x should be thrown out if it's the only point in its neighborhood.

This will definitely throw out all points with $d(x)>d\left(x_{i}\right)$:

Step 3, 2
Step 3 Rule will definitely keep all points with $d(x) \leq d\left(x_{i}\right) / 3$.
$1 \leqslant d\left(x_{j}\right) / 3 \rightarrow 1$

$$
b=d\left(x^{*}\right) \text { is a good estimate for } \delta(S)
$$

We have $d\left(x^{*}\right)=b \leq \delta(S)$ by definition.
Theorem. $\delta(S) \geq b / 3$
Proof. Let (u, v) be the closest pair of points. Since S eventually becomes empty, u, v are deleted from S at some point. Suppose u was deleted first, and let j be the stage at which u was deleted. At that time:

- $d(u) \geq d\left(x_{j}\right) / 3$ because otherwise u would have been kept.
- $d(u)=\delta(S)$ because both u, v were in S at the start of stage j.
- $d\left(x_{j}\right) \geq d\left(x_{i}\right)$ because $i>j$ and at stage j we removed all points with $d(x) \geq d\left(x_{j}\right)$ [rule 3.1] so there are no points left with $d(x) \geq d\left(x_{j}\right)$ from which x_{i} could have been selected.

So: $d(u)=\delta(S) \geq d\left(x_{j}\right) / 3 \geq d\left(x_{i}\right) / 3=b / 3$

Proof: picture

Runtime Analysis

Let S_{i} be the set of points at stage i.
Let s_{i} be $\left|S_{i}\right|$.
Theorem. $\mathbb{E}\left[s_{i}\right] \leq \frac{n}{2^{i-1}}$
Proof. Assume true for i. Then:

$$
\mathbb{E}\left[s_{i+1}\right]=\mathbb{E} \mathbb{E}\left[s_{i+1}\right] \leq \mathbb{E}\left[s_{i} / 2\right]=\frac{1}{2} \mathbb{E}\left[s_{i}\right] \leq \frac{1}{2} \frac{n}{2^{i-1}}=\frac{n}{2^{i}}
$$

Here $\mathbb{E}\left[s_{i} / 2\right] \leq s_{i} / 2$ because we chose x_{i} randomly. If you consider all the points, about half would have larger $d(x)$ and half would be smaller.

Runtime, 2

We then have that the total running time is

$$
\mathbb{E}\left(\sum_{i=1}^{i^{*}} s_{i}\right) \leq \mathbb{E}\left(\sum_{i=1}^{n} s_{i}\right)=\sum_{i=1}^{n} \mathbb{E}\left[s_{i}\right] \leq \sum_{i=1}^{n} \frac{n}{2^{i-1}} \leq 2 n
$$

where i^{*} is the number of stages, and the inequalities and equalities follow from linearity of expectation, the theorem above, and the sum of a geometric series.

