1. You’re driving from Los Angeles, CA to Pittsburgh, PA. There are gas stations along the way at
distance x_1, x_2, \ldots, x_n from Los Angeles. Because of different wait times and pump speeds, filling up
at gas station x_i takes c_i minutes (the gas costs the same everywhere, so we ignore its cost). Your car
can hold enough gas to go 100 miles, and you start with a full tank of gas. If you decide to stop at a
gas station, you have to fill your entire tank up. Give a dynamic programming algorithm that finds
where you should stop to spend the minimum amount of time at gas stations during your trip.

![Diagram of gas stations]

Hint: you know you’ll have to stop at a gas station within 100 miles of Pittsburgh, for example.

2. Let’s change the problem above slightly: suppose if you stop, you don’t need to fill up the entire tank.
Instead, if you put in m miles worth of gas, it will take you $c_i + mg_i$ minutes at station x_i. For
simplicity, assume that you start out with an empty tank but you start at a station x_1 in LA, and that
x_n is your destination in Pittsburgh. Give a dynamic programming algorithm to solve this problem.

3. In some languages, such as Chinese, words are sometimes not separated by spaces. For another
example, in German, numbers are sometimes written together “Dreihundertfünfzigfunftausend” and
compound words are often created: “Glückszahl” means “lucky (Glück) number (zahl).” We would
like to decompose such strings into the component words that were used to form them. Assume you
have a function $\text{word}(s)$ that takes a string s and returns a score indicating how likely it is that s is a
indivisible word. For example, in German, “zahl” would receive a high score, but “kszahl” would not.
Give a dynamic programming algorithm to break a given string $a = a_1a_2\ldots a_n$ into words w_1, \ldots, w_k
to maximize $\sum_i \text{word}(w_i)$. (Note that you are not given k as input.)