02-713 Review

Midterm 1

* | took some images from Prof Kingsford’s slides

® Disclaimer: | have not seen the midterm
vou will take.

® But we would like to recap some important
points and try our best to answer questions
you may have.

Anything is fair game, but ...

® | always like using slides as a starting point
for what could be asked.

® See what theorems could be handy w/
each algorithm: they are useful tools in the
design of algorithms.

® Branch out to the book for sup info.

For the test ...

® On anything that’s more open-ended,
describe your primary strategy.

® Pseudocode is good for being more specific.

Basic data structures
(Arrays, Lists, Trees, Graphs, Heaps, Union-Find)

Analyze asymptotic run-time of an algorithm (Big Oh)

2 sorting algorithms
(HeapSort, MergeSort)

3 Optimal Algorithms for MIST
(Prim’s, Reverse-Delete, Kruskal’s)

5 Algorithms based on Tree Growing
(Prim’s, BFS, DFS, Dikjstra’s, A*)

Preview of dynamic programming
(Bellman-Ford)

Intro to Divide and Conquer
(Counting Inversions, Closest Points)

Heaps

® Finding the minimum item takes constant time.

® Tree property: children are always greater in
value than the parent.

® Insertion and deletion take log(n) time and
preserve this property via “sift ups” and “sift
downs”.

® Heapsort: Keep grabbing the minimum
element from the top of the heap and delete it.

UF ltems: UF Sizes:

E-EEHEHE
- |-
o <] °] [o
-E-EHE 'K
- Union-FiIn
i-E-E-EHE K
"L T T Xooa ve e R
god o © &6
nnnnn (1,2) é

® Given: a partition of a set é
(collection of sets are disjoint)

® Goal: efficiently find which set an element belongs
to and efficiently merge them together.

® During a union, updating the array that says which
set an element is a member of can loop through
entire array.

® However, k union operations is bounded by klog(k)
(set sizes “double”)

MST Key Points (1) /@

® Find the tree in a graph with the minimum
total edge cost.

V

® Prim’s algorithm: tree grow by adding the
lowest cost edge to the tree.

® Cut property can be used to prove their
correctnesses.

Theorem (MST Cut Property). Let S be a subset of nodes,
with |S| > 1 and |S| < n. |Everyl MST contains the edge
e={v,w} withveS andw € V — S that has minimum weight.

MST Key Points (2) %

V

® Reverse-Delete algorithm: Remove edges
and avoid disconnecting the graph.

® Kruskal’s algorithm: Add edges avoiding
cycles.

® Cycle property can be used to prove the
correctness of both of these.

Theorem (Cycle Property). Let C be a cycle in G. Let

e = (u,v) be the edge with maximum weight on C. Then e is not
inlany|MST of G.

Big Oh

® Big Oh used often in practice to describe
runtime of algorithms

® |deally find the “best” Oh
(i.e. the lowest upper bound)

® \When proving statements in asymptotic
analysis, start with the definition and make

sure you specify constants

Definition (O). A runtime T(n) is O(f(n)) if there exist
constants ng > 0 and ¢ > 0 such that:

T(n) < cf(n) for all n > ng

® Traverse the graph in ‘layers’

® Add visited nodes to queue
(FIFO, TreeGrowing process earliest
discovered node)

Non-tree edge property:

Theorem. Choose x € L; and y € L; such that {x,y} is an edge
in undirected graph G. Then i and j differ by at most 1.

DFS

® Keep walking down a path until you are
forced to backtrack.

® Add edges to a stack
(LIFO, TreeGrowing: process most recently
discovered node)

Non-tree edge property:

Theorem. Let x and y be nodes in the DFS tree T such that
{x,y} is an edge in undirected graph G. Then one of x or y is an
ancestor of the other in T¢.

DAG @<\§@>/©<%>@

® Key property: Directed, no cycles!

® You can ‘topologically sort a DAG’ so that
there are no ‘backwards’ edges.

Theorem. Every DAG contains a vertex with no incoming edges.

Dikjstra

® Tree Growing: instead of choosing min-
weight edge like Prim’s, choose the

minimum of d(u) + length(u,v) ©
® Only positive weights @3\4 .
(—,

JOS
oS

distg(wy,i-1)
A

—

@\cgi\&i;@ Bellman-Ford

N— 7

——
distg(Wa,i-1)

® Handles negative weights
(assume no negative cycles)

® 1 pass applies the Ford rule to all edges
® Can make at most n-1 passes

® Not ‘greedy’ like Dikjstra’s algorithm
Ford step. Find an edge (u, v) such that
dists(u) + d(u, v) < dists(v)

and set dists(v) = dists(u) + d(u, v).

® Another Tree Growing, but with a goal
node and a heuristic to help get us there

® Heuristic guarantees we will find optimal
solution

® Heuristic must be less than true distance

® Ideally it is closer to the real distance

Divide and Conquer

® Try to divide into ‘equal’ parts to get
O(nlogn)

® Assume the problem is solved for each part
and the trick is to design an efficient merge
step.

® Need a base case for the ‘leaf’ of the
recursion tree.

