Graph Traversals

Slides by Carl Kingsford

Feb. 1, 2013

Based on/Reading: Chapter 3 of Kleinberg & Tardos
Breadth-First Search

Breadth-first search explores the nodes of a graph in increasing distance away from some starting vertex s.

It decomposes the component into layers L_i such that the shortest path from s to each of nodes in L_i is of length i.

Breadth-First Search:

1. L_0 is the set $\{s\}$.
2. Given layers L_0, L_1, \ldots, L_j, then L_{j+1} is the set of nodes that are not in a previous layer and that have an edge to some node in layer L_j.
BFS Tree

```
  S
 /|
/  |
1-2-3-4-5
|   |
6-7-8-9
|   |
10-11-12-13-14-15-16
```
BFS Tree Example

A BFS traversal of a graph results in a breadth-first search tree:

Can we say anything about the non-tree edges?
A BFS traversal of a graph results in a breadth-first search tree:

Can we say anything about the non-tree edges?
Example BFS

0:0
1:-1
2:-1
3:-1
4:-1
5:-1
6:-1
7:-1
8:-1
9:-1
10:-1
11:-1
12:-1
13:-1
14:-1

0:0
1:-1
2:-1
3:-1
4:-1
5:-1
6:-1
7:-1
8:-1
9:-1
10:-1
11:-1
12:-1
13:-1
14:-1
Example BFS
Depth-First Search

DFS keeps walking down a path until it is forced to backtrack.

It backtracks until it finds a new path to go down.

Think: Solving a maze.

It results in a search tree, called the depth-first search tree.

In general, the DFS tree will be very different than the BFS tree.
Depth-First Search
Example DFS
Example DFS
Example DFS
Example DFS
Example DFS
Example DFS

0:0:-1
1:5:-1 2:4:-1
3:-1:-1 4:-1:-1
5:2:-1
6:7:-1
7:6:-1
8:-1:-1
9:-1:-1
10:-1:-1
11:-1:-1
12:3:-1
13:-1:-1
14:1:-1
2:4:-1
5:2:-1
8:1:-1
12:3:-1
7:6:-1
6:7:-1
11:1:-1
Example DFS
Example DFS
Example DFS
Example DFS
Example DFS
General Tree Growing (following Gross & Yellen)

We can think of BFS and DFS (and several other algorithms) as special cases of tree growing:

- Let T be the current tree T, and
- Maintain a list of frontier edges: the set of edges of G that have one endpoint in T and one endpoint not in T:

- Repeatedly choose a frontier edge (somehow) and add it to T.
Tree Growing

TreeGrowing(graph G, vertex v, func nextEdge):
 T = (v, ∅)
 S = set of edges incident to v
 While S is not empty:
 e = nextEdge(G, S)
 T = T + e // add edge e to T
 S = updateFrontier(G, S, e)
 return T

▶ The function nextEdge(G, S) returns a frontier edge from S.
▶ updateFrontier(G, S, e) returns the new frontier after we add edge e to T.
Tree Growing

These algorithms are all special cases / variants of Tree Growing, with different versions of nextEdge:

1. Depth-first search
2. Breadth-first search
3. Prim’s minimum spanning tree algorithm
4. Dijkstra’s shortest path
5. A*
BFS & DFS as Tree Growing

What’s nextEdge for DFS?

What’s nextEdge for BFS?
BFS & DFS as Tree Growing

What’s nextEdge for DFS?

Select a frontier edge whose tree endpoint was discovered most recently.

Why? We can use a stack to implement DFS.
Runtime: $O(|Edges|)$

What’s nextEdge for BFS?
BFS & DFS as Tree Growing

What’s nextEdge for DFS?

Select a frontier edge whose tree endpoint was discovered most recently.

Why? We can use a stack to implement DFS.
Runtime: $O(|Edges|)$

What’s nextEdge for BFS?

Select a frontier edge whose tree endpoint was discovered earliest.

Why? We can use a queue to implement BFS.
Runtime: $O(|Edges|)$
Prim’s Algorithm

Prim’s Algorithm: Run TreeGrowing starting with any root node, adding the frontier edge with the smallest weight.

Theorem. *Prim’s algorithm produces a minimum spanning tree.*

![Diagram of Prim’s Algorithm](image)

S = set of nodes already in the tree when e is added
Implementations of BFS and DFS
BFS implementation

procedure bfs(G, s):
 Q := queue containing only s
 while Q not empty
 v := Q.front(); Q.remove_front()
 for w ∈ G.neighbors(v):
 if w not seen:
 mark w seen
 Q.enqueue(w)
Recursive implementation of DFS

procedure dfs(G, u):
 while u has an unvisited neighbor in G
 v := an unvisited neighbor of u
 mark v visited
 dfs(G, v)
procedure dfs(G, s):
 S := stack containing only s
 while S not empty
 v := S.pop()
 if v not visited:
 mark v visited
 for w ∈ G.neighbors(v): S.push(w)
Properties of BFS and DFS
Property of Non-BFS-Tree Edges

Theorem. Choose $x \in L_i$ and $y \in L_j$ such that $\{x, y\}$ is an edge in undirected graph G. Then i and j differ by at most 1.

In other words, edges of G that do not appear in the tree connect nodes either in the same layer or adjacent layer.

Proof. Suppose not, and that $i < j - 1$.

All the neighbors of x will be found by layer $i + 1$.

Therefore, the layer of y is less than $i + 1$, so $j \leq i + 1$, which contradicts $i < j - 1$.

\qed
A property of Non-DFS-Tree Edges

Theorem. Let x and y be nodes in the DFS tree T_G such that \{x, y\} is an edge in undirected graph G. Then one of x or y is an ancestor of the other in T_G.

Proof. Suppose, wlog, x is reached first in the DFS.

All the nodes that are marked explored between first encountering x and leaving x for the last time are descendants of x in T_G.

When we reach x, node y must not yet have been explored.

It must become explored before leaving x for the last time (otherwise, we should add \{x, y\} to T_G). Hence, y is a descendent of x in T_G. □