02-713 Lecture 6: Asymptotic Analysis

Notes by Carl Kingsford

1. Recall O and Ω notation

Definition 1 (O). Given two real-valued functions f and g, we say f(n) = O(g(n)) if there exists constants c > 0 and $n_0 > 0$ such that

$$0 \le f(n) \le cg(n)$$
 for all $n \ge n_0$. (1)

Definition 2 (Ω). Given two real-valued functions f and g, we say $f(n) = \Omega(g(n))$ if there exists constants c > 0 and $n_0 > 0$ such that

$$f(n) \ge cg(n) \ge 0$$
 for all $n \ge n_0$. (2)

Definition 3 (Θ). Given two real-valued functions f and g, we say $f(n) = \Theta(g(n))$ if f(n) =O(g(n)) and $f(n) = \Omega(g(n))$.

2. Examples and Properties

Example 1. Prove that $an^2 + bn + d = O(n^2)$ for all real a, b, d.

Solution:

$$an^2 + bn + d \le |a|n^2 + |b|n + |d|$$
 for all $n \ge 0$ (3)

$$\leq |a|n^2 + |b|n^2 + |d|n^2 \qquad \text{for all } n \geq 1 \tag{4}$$

$$= (|a| + |b| + |d|)n^2. (5)$$

Take c = |a| + |b| + |d| and $n_0 = 1$.

Example 2. Show that any degree-d polynomial $p(n) = \sum_{i=0}^{d} \alpha_i n^i$ with $\alpha_d > 0$ is $\Theta(n^d)$.

Solution: A similar argument to example 1 shows that p(n) is $O(n^d)$. For all $n \ge 1$:

$$p(n) = \sum_{i=0}^{d} \alpha_i n^i \le \sum_{i=0}^{d} |\alpha_i| n^i \le \sum_{i=0}^{d} |\alpha_i| n^d = n^d \sum_{i=0}^{d} |\alpha_i|.$$
 (6)

So take $c = \sum_{i=0}^{d} |\alpha_i|$ and $n_0 = 1$. We now show that p(n) is $\Omega(n^d)$. For $n \ge 1$, we have:

$$cn^{d} \le \sum_{i=0}^{d} \alpha_{i} n_{i} \iff c \le \sum_{i=0}^{d} \alpha_{i} n^{i} / n^{d} = \alpha_{d} + \sum_{i=0}^{d-1} \alpha_{i} n^{i-d} = \alpha_{d} + \sum_{i=0}^{d-1} \frac{\alpha_{i}}{n^{d-i}}.$$
 (7)

Let $N = \{i : \alpha_i < 0\}$. Then we have:

$$\alpha_d + \sum_{i=0}^{d-1} \frac{\alpha_i}{n^{d-i}} \ge \alpha_d + \sum_{i \in N} \frac{\alpha_i}{n^{d-i}}$$
 b/c we threw out the positive terms (8)

$$= \alpha_d - \sum_{i \in N} \frac{|\alpha_i|}{n^{d-i}} \tag{9}$$

$$\geq \alpha_d - \frac{1}{n} \sum_{i \in N} |\alpha_i|$$
 b/c 1/n is the largest dependence on n (10)

We have $\frac{1}{n}\sum_{i\in N}|\alpha_i|<\alpha_d$ when $n>\frac{\sum_{i\in N}|\alpha_i|}{\alpha_d}$ and at that n and larger, (10) is strictly greater than 0. So we choose n_0 equal to that n and any c between 0 and $\alpha_d-\frac{1}{n_0}\sum_{i\in N}|\alpha_i|$.

Example 3 (Transitivity). Show that if f(n) = O(g(n)) and g = O(h(n)) then f(n) = O(h(n)).

Solution: By the assumptions, there are constants c_f, n_f, c_g, n_g such that $f(n) \leq c_f g(n)$ and $g(n) \leq c_g h(n)$ for all $n \geq \max\{n_f, n_g\}$. Therefore

$$f(n) \le c_f g(n) \le c_f c_g h(n) \tag{11}$$

and setting $c = c_f c_g$ and $n_0 = \max\{n_f, n_g\}$.

Example 4 (Transitivity of Ω). Show that if $f = \Omega(g)$ and $g = \Omega(h)$ then $f = \Omega(h)$.

Solution: a very similar argument to example 3: there are c_f, n_f such that $f(n) \geq c_f g(n)$ and there are c_g, n_g such that $f(n) \geq c_g h(n)$. Substituting in for g(n) we get $f(n) \geq c_f c_g h(n)$ for all $n \geq \max\{n_f, n_g\}$.

Example 5. For positive functions f(n), f'(n), g(n), g'(n), if f(n) = O(f'(n)) and g(n) = O(g'(n)) then f(n)g(n) = O(f'(n)g'(n)).

Solution: There are constants c_f, n_f, c_g, n_g as specified in the definition of O-notation:

$$f(n) \le c_f f'(n)$$
 for all $n > n_f$ (12)

$$g(n) \le c_g g'(n)$$
 for all $n > n_g$ (13)

So for $n > \max\{n_f, n_q\}$ both statements above hold, and we have:

$$f(n)g(n) \le c_f f'(n)c_q g'(n) = c_f c_q f'(n)g'(n).$$
 (14)

Taking $c = c_f c_q$ and $n_0 = \max\{n_f, n_q\}$ yields the desired statement.

Example 6. Show that $\max\{f(n),g(n)\}=\Theta(f(n)+g(n))$ for any f(n),g(n) that eventually become and stay positive.

Solution: We have $\max\{f(n), g(n)\} = O(f(n) + g(n))$ by taking c = 1 and n_0 equal to be the point where they become positive. We have $\max\{f(n), g(n)\} = \Omega(f(n) + g(n))$ taking the same n_0 and c = 1/2 since the average of positive functions f(n) and g(n) is always less than the max.

Example 7. Show that $(n+a)^d = \Theta(n^d)$ when d > 0.

Solution: $(n+a)^d = \sum_{i=0}^d {d \choose i} a^{d-i} n^i$ by the binomial theorem. This equals $\sum_{i=0}^d \alpha_i n^i$ for $\alpha_i = {d \choose i} a^{d-i}$, which is a degree-d polynomial, which is $\Theta(n^d)$ by example 2.