Kruskal’s Minimum Spanning Tree Algorithm & Union-Find Data Structures

Slides by Carl Kingsford

Jan. 21, 2013

Reading: AD 4.5–4.6
Greedy minimum spanning tree rules

All of these greedy rules work:

1. Starting with any root node, add the frontier edge with the smallest weight. (Prim’s Algorithm)

2. Add edges in increasing weight, skipping those whose addition would create a cycle. (Kruskal’s Algorithm)

3. Start with all edges, remove them in decreasing order of weight, skipping those whose removal would disconnect the graph. (“Reverse-Delete” Algorithm)
Prim’s Algorithm

Prim’s Algorithm: Starting with any root node, add the frontier edge with the smallest weight.

Theorem. *Prim’s algorithm produces a minimum spanning tree.*

\[S = \text{set of nodes already in the tree when } e \text{ is added} \]
Cycle Property

Theorem (Cycle Property). Let C be a cycle in G. Let $e = (u, v)$ be the edge with maximum weight on C. Then e is not in any MST of G.

Suppose the theorem is false. Let T be a MST that contains e.

Deleting e from T partitions vertices into 2 sets:

$$S \text{ (that contains } u\text{)} \text{ and } V - S \text{ (that contains } v\text{)}.$$

Cycle C must have some other edge f that goes from S and $V - S$.

Replacing e by f produces a lower cost tree, contradicting that T is an MST.
Cycle Property, Picture

\[V \rightarrow S \rightarrow V - S \]

\[u \rightarrow e \rightarrow v \]

\[f \]
MST Property Summary

1. **Cut Property:** The smallest edge crossing any cut must be in all MSTs.

2. **Cycle Property:** The largest edge on any cycle is never in any MST.
Reverse-Delete Algorithm

Reverse-Delete Algorithm: Remove edges in decreasing order of weight, skipping those whose removal would disconnect the graph.

Theorem. *Reverse-Delete algorithm produces a minimum spanning tree.*

Because removing e won't disconnect the graph, there must be another path between u and v.

Because we're removing in order of decreasing weight, e must be the largest edge on that cycle.
Kruskal’s Algorithm

Kruskal’s Algorithm: Add edges in increasing weight, skipping those whose addition would create a cycle.

Theorem. *Kruskal’s algorithm produces a minimum spanning tree.*

Proof. Consider the point when edge \(e = (u, v) \) is added:

\[S = \text{nodes to which } v \text{ has a path just before } e \text{ is added} \]

\[u \text{ is in } V-S \] (otherwise there would be a cycle)

\[e = (u,v) \]
Example run of Kruskal’s
Example run of Kruskal's
Example run of Kruskal’s
Example run of Kruskal’s algorithm.
Another example
Data Structure for Kruskal’s Algorithm

Kruskal’s Algorithm: Add edges in increasing weight, **skipping** those whose addition would create a cycle.

How would we check if adding an edge \(\{u, v\} \) would create a cycle?
Data Structure for Kruskal’s Algorithm

Kruskal’s Algorithm: Add edges in increasing weight, skipping those whose addition would create a cycle.

How would we check if adding an edge \(\{u, v\} \) would create a cycle?

- **Would create a cycle if** \(u \) and \(v \) are already in the same component.
Data Structure for Kruskal’s Algorithm

Kruskal’s Algorithm: Add edges in increasing weight, skipping those whose addition would create a cycle.

How would we check if adding an edge \(\{u, v\} \) would create a cycle?

- Would create a cycle if \(u \) and \(v \) are already in the same component.
- We start with a component for each node.
Data Structure for Kruskal’s Algorithm

Kruskal’s Algorithm: Add edges in increasing weight, **skipping** those whose addition would create a cycle.

How would we check if adding an edge \(\{u, v\} \) would create a cycle?

- Would create a cycle if \(u \) and \(v \) are already in the same component.
- We start with a component for each node.
- Components merge when we add an edge.
Data Structure for Kruskal’s Algorithm

Kruskal’s Algorithm: Add edges in increasing weight, skipping those whose addition would create a cycle.

How would we check if adding an edge \{u, v\} would create a cycle?

- Would create a cycle if \(u\) and \(v\) are already in the same component.
- We start with a component for each node.
- Components merge when we add an edge.
- Need a way to: check if \(u\) and \(v\) are in same component and to merge two components into one.
Union-Find Abstract Data Type

The Union-Find abstract data type supports the following operations:

- **UF.create(S)** — create the data structure containing $|S|$ sets, each containing one item from S.

- **UF.find(i)** — return the “name” of the set containing item i.

- **UF.union(a,b)** — merge the sets with names a and b into a single set.
A Union-Find Data Structure

UF Items:

UF Sizes:

UF Sets Array:
Implementing the union & find operations

\textbf{make_union_find}(S) Create data structures on previous slide. Takes time proportional to the size of S.

\textbf{find}(i) Return UF.sets[i]. Takes a constant amount of time.

\textbf{union}(x,y) Use the “size” array to decide which set is smaller. Assume x is smaller.
Walk down elements i in set x, setting sets[i] = y. Set size[y] = size[y] + size[x].
Runtime of array-based Union-Find

Theorem. Any sequence of k union operations on a collection of n items takes time at most proportional to $k \log k$.

Proof. After k unions, at most $2k$ items have been involved in a union. (Each union can touch at most 2 new items).

We upper bound the number of times set[v] changes for any v:

- Every time set[v] changes, the size of the set that v is in at least doubles. why?
- So, set[v] can have changed at most $\log_2(2k)$ times.

At most $2k$ items have been modified at all, and each updated at most $\log_2(2k)$ times $\implies 2k \log_2(2k)$ work.
Running time of Kruskal’s algorithm

Sorting the edges: \(\approx m \log m \) for \(m \) edges.

\[m \leq n^2, \text{ so } \log m < \log n^2 = 2 \log n \]

Therefore sorting takes \(\approx m \log n \) time.

At most \(2m \) “find” operations: \(\approx 2m \) time.

At most \(n - 1 \) union operations: \(\approx n \log n \) time.

\[\implies \text{Total running time of } \approx m \log n + 2m + n \log n. \]

The biggest term is \(m \log n \) since \(m > n \) if the graph is connected.
Another way to implement Union-Find
Another way to implement Union-Find

union(1,2)
Tree-based Union-Find

\textit{make_union_find}(S) Create $|S|$ trees each containing a single item and size 1. Takes time proportional to the size of S.

\textit{find}(i) Follow the pointer from i to the root of its tree.

\textit{union}(x,y) If the size of set x is $<$ that of y, make y point to x. Takes constant time.
Runtime of tree-based Find

Theorem. *find(i)* takes time $\approx \log n$ in a tree-based union-find data structure containing n items.

Proof. The depth of an item equals the number of times the set it was in was renamed.

The size of the set containing v at least doubles every time the name of the set containing v is changed.

The largest number of times the size can double is $\log_2 n$. □
Running time of Kruskal’s algorithm using tree-based union-find

Same running time as using the array-based union-find:

- Sorting the edges: \(\approx m \log n \) for \(m \) edges.
- At most \(2m \) “find” operations: \(\approx \log n \) time each.
- At most \(n - 1 \) union operations: \(\approx n \) time.

\[\implies \text{Total running time of } \approx m \log n + 2m \log n + n. \]

The biggest term is \(m \log n \) since \(m > n \) if the graph is connected.