
02-713 Homework #5: Traveling Salesman and A*
Due: Mar. 18 by 9:30am

Introduction. Let V = {u1, . . . , un} be a set of cities and let d(ui, uj) = d(uj , di) be the (symmet-
ric) distance between city ui and uj . The optimal traveling salesman tour of the cities is a sequence
of cities that visits every city in V exactly once, that returns to the city at which the sequence
started, and that minimizes the total distance traveled. The TSP problem is the computational
problem of finding such an optimal tour. The TSP problem is NP-complete, which we will see later
means that it’s unlikely that an efficient algorithm exists for this problem. In this assignment, you
will implement heuristic search algorithms to find the optimal tour.

Assignment. Write a Python program that finds the optimal traveling salesman tour. You can
use any Python library that is part of the standard Python distribution1. You can also use the
networkx2, numpy3, matplotlib4 libraries. You can also use any code that is on the 02-713 website.
You can use any algorithm you want to find the optimal TSP tour; one suggestion is given below.

Input will be provided as a graph in GEXF format, which can be read using the
networkx.read_gexf() function. The graph is undirected and guaranteed to be complete (there’s
an edge between every pair of nodes). Each node will have attributes ‘x’ and ‘y’ that are floating
point coordinates in the plane for that city. Every edge will have an attribute ‘weight’ that gives
the length of the edge, which will have been computed by the Euclidean distance:

d(ui, uj) =
√

(xi − xj)2 + (yi − yj)2. (1)

See the NetworkX documentation for more details about how to access graph attributes.

Output should consist of two lines of the following format:

Tour: a b c d e f g h i j

Cost: 10.2345

These lines should start in column 0 and be printed to standard output (using, e.g., the Python
print statement). The first line gives the optimal tour that you compute. The tour should start
with the node that has the lexicographically first name. The node names then should be listed in
the order of the optimal tour, each separated by a single space. The first city should not be listed
twice. The second line gives the cost of the tour reported on the previous line. Your program can
print other lines of output, but only the two above should start with Tour: and Cost: . Zero
points will be give for assignments that fail to format the output correctly.

Command line and runtime environment: You should submit your assignment via Autolab, includ-
ing all the files need for it to run. You can assume that the computer we use to run your program
has networkx, numpy, and matplotlib installed, so you do not need to submit those libraries with
your program. Your program should run using Python 2.7. It should be callable via the command
line using the following syntax:

1http://docs.python.org/2/library/index.html
2http://networkx.github.com
3http://www.numpy.org
4http://matplotlib.org

1



python tsp.py input.gexf

where input.gexf is the GEXF file to read that defines the cities and distances between them.

Collaboration policy. You must code your own solution to the problem without using or looking
at other students’ code. You should not use any code you find online (except “reasonable”, small,
< 5-line snippets that describe how to solve general programming tasks). You can use any other
sources, books, websites to design your algorithm. You should cite any source you use.

One approach. You are free to solve the problem using any algorithm you like. A good approach
would be to implement the A* algorithm and use it to search a state space graph where the nodes
represent prefixes of tours and prefix a1, . . . , ak has neighbors a1, . . . , ak, ak+1 for every ak+1 that
is not in {a1, . . . , ak}. A good heuristic is the cost of a minimum spanning tree connecting the
remaining nodes. Figure 1 below shows the running time on an iMac of this approach for various
problem sizes. You code should run on these instances (provided on the website) in approximately
the same amount of time or better.

(a) (b) (c)

Figure 1: (a) TSP using A* and the MST heuristic on graphs generated from randomly placed
cities where n edges forming a tour have been artificially given weight 0. The instances are given
in the rNem1.gexf files. (b) Running time for the same algorithm when there is no embedded tour
of length 0. The instances are given in the rN.gexf files. (c) Three more larger problems added to
figure (b). Note the very long time it takes to solve a TSP instance of size 40.

2


