
Computer Architecture
02-201 / 02-601

The Conceptual Architecture of a Computer

register 0

register 1

register 2

register 3

register n

CPU
w

or
d

1

w
or

d
2

w
or

d
3

w
or

d
4

w
or

d
5

w
or

d
6

w
or

d
7

w
or

d
8

w
or

d
9

w
or

d
10

w
or

d
11

w
or

d
12

w
or

d
13

w
or

d
14

w
or

d
15

w
or

d
m

RAM:

registers hold small
amounts of data for
processing by the
CPU

CPU performs
operations on data
in registers (add,

subtract, etc.)

w
or

d
0

Reading / writing to
some special memory
addresses may cause
peripheral devices like
disk, display, etc. to
perform a task

registers & RAM
store data as
binary numbers

PC

Binary Representation

4 2 5 6

 6x100

 5x101

 2x102

4x103+

4 2 5 6

Base 10 (decimal) notation:

1 0 0 0 0 1 0 1 0 0 0 0 0
 0x20

 0x21

 0x22

 0x23

 0x24

 1x25

 0x26

 1x27

 0x28

 0x29

 0x210

 0x211

+

4 2 5 6 =

Base 2 (binary) notation:

1x212

1 0 0 0 0 1 0 1 0 0 0 0 0

Computers store the numbers in binary
because it has transistors that can
encode 0 and 1 efficient

Each 0 and 1 is a bit.

Built-in number types each have a
maximum number of bits.

Hexadecimal Representation

4 2 5 6

 6x100

 5x101

 2x102

4x103+

4 2 5 6

Base 10 (decimal) notation:

Decimal isn’t good for computers because they work with bits.
But writing everything in binary would be tedious.
Hence, we often use base 16, aka “hexadecimal”:

1 0 A 0

 0x160

 Ax161

 0x162

1x163+

1x4096 + 10x16 = 4256

Base 16 (hexadecimal) notation:

Need 16 different digits, so use 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

A=10, B=11, C=12, D=13, E=14, F=15

Add CPU instruction

ADD Rd, Rs, Rt Set register Rd to Rs + Rt

0 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0

Instruction
(aka opcode) Rd Rs Rt

1 = ADD 2 = R2 2 = R2 8 = R8

An instruction is encoded as a sequence of bits:

122816Written as a hexadecimal number:

Subtract CPU instruction

SUB Rd, Rs, Rt Set register Rd to Rs - Rt

0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0

Instruction
(aka opcode) Rd Rs Rt

2 = SUB 2 = R2 2 = R2 8 = R8

The SUB instruction is the same format as ADD, but with a different opcode:

222816Written as a hexadecimal number:

Load “Immediate” Instruction

0 1 1 1 0 1 1 0 1 1 0 0 1 0 0 0

Instruction
(aka opcode) Rd immediate

7 = LIMM 6 = R6 200 = value

LIMM Rd, value Set register Rd to value

76C816Written as a hexadecimal number:

 = C816

For LIMM, the last 8 bits give the value to copy into Rd:

Load Instruction

1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0

Instruction
(aka opcode) Rd address

8 = LOAD 4 = R4 136 = addr

LOAD Rd, addr Set register Rd to ram[addr]

848816Written as a hexadecimal number:

 = 8816

For LOAD, the last 8 bits give the address of the memory cell to copy into Rd:

Store Instruction

1 0 0 1 0 1 0 0 1 0 0 0 1 0 0 0

Instruction
(aka opcode) Rd address

9 = STORE 4 = R4 136 = addr

STORE Rd, addr Set register ram[addr] to Rd

948816Written as a hexadecimal number:

 = 8816

For LOAD, the last 8 bits give the address of the memory cell to copy into Rd:

An Example Program

LIMM R1, 64 // R1 = 200
LIMM R2, 1E // R2 = 30
ADD R2, R1, R2 // R2 = R1 + R2
STORE R2, 46 // ram[70] = R2

What does this program do?

An Example Program

LIMM R1, 64 // R1 = 200
LIMM R2, 1E // R2 = 30
ADD R2, R1, R2 // R2 = R1 + R2
STORE R2, 46 // ram[70] = R2

What does this program do? Stores 200 + 30 into memory location 70

var r1 int = 200
var r2 int = 30
r2 = r1 + r2
var ram70 int = r2

Similar to the following Go program:

Go manages the registers and
memory locations for you.

It may keep a variable in a
register, memory, or both.

Where is the program stored?

The program is just a sequence of integers that encode for instructions.

LIMM R1, 64 // R1 = 200 ; 7164
LIMM R2, 1E // R2 = 30 ; 721E
ADD R2, R1, R2 // R2 = R1 + R2 ; 1212
STORE R2, 46 // ram[70] = R2 ; 9246

Where is the program stored?

The program is just a sequence of integers that encode for instructions.

LIMM R1, 64 // R1 = 200 ; 7164
LIMM R2, 1E // R2 = 30 ; 721E
ADD R2, R1, R2 // R2 = R1 + R2 ; 1212
STORE R2, 46 // ram[70] = R2 ; 9246

These integers are stored in the same RAM used for variables:

7164

721E

1212

9242

10:

11:

12:

13:

RAMaddress

Where is the program stored?

The program is just a sequence of integers that encode for instructions.

LIMM R1, 64 // R1 = 200 ; 7164
LIMM R2, 1E // R2 = 30 ; 721E
ADD R2, R1, R2 // R2 = R1 + R2 ; 1212
STORE R2, 46 // ram[70] = R2 ; 9246

PC =

These integers are stored in the same RAM used for variables:

7164

721E

1212

9242

10:

11:

12:

13:

RAMaddress
The CPU has a special register called PC
(“program counter”) that contains the
address of the current instruction.

After each instruction, the PC is
incremented by 1.

Where is the program stored?

The program is just a sequence of integers that encode for instructions.

LIMM R1, 64 // R1 = 200 ; 7164
LIMM R2, 1E // R2 = 30 ; 721E
ADD R2, R1, R2 // R2 = R1 + R2 ; 1212
STORE R2, 46 // ram[70] = R2 ; 9246

PC =

These integers are stored in the same RAM used for variables:

7164

721E

1212

9242

10:

11:

12:

13:

RAMaddress
The CPU has a special register called PC
(“program counter”) that contains the
address of the current instruction.

After each instruction, the PC is
incremented by 1.

Where is the program stored?

The program is just a sequence of integers that encode for instructions.

LIMM R1, 64 // R1 = 200 ; 7164
LIMM R2, 1E // R2 = 30 ; 721E
ADD R2, R1, R2 // R2 = R1 + R2 ; 1212
STORE R2, 46 // ram[70] = R2 ; 9246

PC =

These integers are stored in the same RAM used for variables:

7164

721E

1212

9242

10:

11:

12:

13:

RAMaddress
The CPU has a special register called PC
(“program counter”) that contains the
address of the current instruction.

After each instruction, the PC is
incremented by 1.

Where is the program stored?

The program is just a sequence of integers that encode for instructions.

LIMM R1, 64 // R1 = 200 ; 7164
LIMM R2, 1E // R2 = 30 ; 721E
ADD R2, R1, R2 // R2 = R1 + R2 ; 1212
STORE R2, 46 // ram[70] = R2 ; 9246

PC =

These integers are stored in the same RAM used for variables:

7164

721E

1212

9242

10:

11:

12:

13:

RAMaddress
The CPU has a special register called PC
(“program counter”) that contains the
address of the current instruction.

After each instruction, the PC is
incremented by 1.

PC = 7164

721E

1212

9242

10:

11:

12:

13:

RAMaddress

070:

LIMM R1, 64 // R1 = 100 ; 7164
LIMM R2, 1E // R2 = 30 ; 721E
ADD R2, R1, R2 // R2 = R1 + R2 ; 1212
STORE R2, 46 // ram[70] = R2 ; 9246

R0 = 0

R1 = 0

R2 = 0

R3 = 0

Rn = 0

PC = 10

CPU

014:

PC =

7164

721E

1212

9242

10:

11:

12:

13:

RAMaddress

070:

LIMM R1, 64 // R1 = 100 ; 7164
LIMM R2, 1E // R2 = 30 ; 721E
ADD R2, R1, R2 // R2 = R1 + R2 ; 1212
STORE R2, 46 // ram[70] = R2 ; 9246

R0 = 0

R1 = 0

R2 = 0

R3 = 0

Rn = 0

PC = 10

CPU

014:11

64

PC =

7164

721E

1212

9242

10:

11:

12:

13:

RAMaddress

070:

LIMM R1, 64 // R1 = 100 ; 7164
LIMM R2, 1E // R2 = 30 ; 721E
ADD R2, R1, R2 // R2 = R1 + R2 ; 1212
STORE R2, 46 // ram[70] = R2 ; 9246

R0 = 0

R1 = 0

R2 = 0

R3 = 0

Rn = 0

PC = 10

CPU

014:1112

64

1E

PC =

7164

721E

1212

9242

10:

11:

12:

13:

RAMaddress

070:

LIMM R1, 64 // R1 = 100 ; 7164
LIMM R2, 1E // R2 = 30 ; 721E
ADD R2, R1, R2 // R2 = R1 + R2 ; 1212
STORE R2, 46 // ram[70] = R2 ; 9246

R0 = 0

R1 = 0

R2 = 0

R3 = 0

Rn = 0

PC = 10

CPU

014:111213

64

1E82

PC =

7164

721E

1212

9242

10:

11:

12:

13:

RAMaddress

070:

LIMM R1, 64 // R1 = 100 ; 7164
LIMM R2, 1E // R2 = 30 ; 721E
ADD R2, R1, R2 // R2 = R1 + R2 ; 1212
STORE R2, 46 // ram[70] = R2 ; 9246

R0 = 0

R1 = 0

R2 = 0

R3 = 0

Rn = 0

PC = 10

CPU

014:11121314

64

1E82

82

Ending the program

The computer will keep grabbing an integer, interpreting it as an instruction,
and then incrementing PC indefinitely.

To stop this process, you have to add a HALT instruction:

0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0

Instruction
(aka opcode) ignored

0 = HALT

LIMM R1, 64 // R1 = 200 ; 7164
LIMM R2, 1E // R2 = 30 ; 721E
ADD R2, R1, R2 // R2 = R1 + R2 ; 1212
STORE R2, 46 // ram[46] = R2 ; 9246
HALT // stop program ; 0000

Input, Output, and 0

Register 0 always has value 0

Stores to memory location FF writes the value to the output

Reads from memory location FF read a value from the input

STORE R3, FF

LOAD R4, FF

Write the value R3 to the output

Read the next input value into R3

LIMM R1, 64 // R1 = 200 ; 7164
LOAD R2, FF // R2 = input ; 72FF
ADD R2, R1, R2 // R2 = R1 + R2 ; 1212
STORE R2, FF // write R2 to output ; 92FF
HALT // stop program ; 0000

Example:

Other Arithmetic Operations: AND

AND Rd, Rs, Rt Set register Rd to Rs AND Rt

0 0 1 0 0 0 1 0 0 0 1 0 1 1 0 0

AND takes two binary numbers a and b and creates a binary c number where the
ith bit of c is 1 if and only if the ith bits of both a and b are 1:

0 0 1 0 1 0 0 0 0 1 1 0 1 0 0 0

0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0

a:

b:

c:

1 because both a and b
have 1 in this position.

0 because both a has 0
in this position.

Exclusive Or: XOR

XOR Rd, Rs, Rt Set register Rd to Rs XOR Rt

0 0 1 0 0 0 1 0 0 0 1 0 1 1 0 0

XOR takes two binary numbers a and b and creates a binary c number where the
ith bit of c is 1 if either a or b but not both have 1 in their ith bit:

0 0 1 0 1 0 0 0 0 1 1 0 1 0 0 0

0 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0

a:

b:

c:

0 because both a and b
have 1 in this position.

1 because exactly one
of a, b have 1 at this

position.

AND and XOR in Go

var r1 int = 200

var r2 int = 30

r2 = r1 & r2

var r3 int

r3 = r2 ^ r1

0000000011001000

0000000000011110

r1 =

r2 =

0000000000001000r2 =

r3 = 0000000011000000

Go has bitwise operators:
 & = AND
 ^ = XOR

Left and Right Shift

LSHIFT Rd, Rs, Rt Set register Rd to Rs shifted to the
left by Rt digits

1 0 1 0 0 0 1 0 0 0 1 0 1 1 0 0

1 0 0 0 1 0 0 0 1 0 1 1 0 0 0 0

Rs:

Rd:

Digits fall off
the left and
disappear

0s come in at
the right

Left and Right Shift

LSHIFT Rd, Rs, Rt Set register Rd to Rs shifted to the
left by Rt digits

1 0 1 0 0 0 1 0 0 0 1 0 1 1 0 0

1 0 0 0 1 0 0 0 1 0 1 1 0 0 0 0

Rs:

Rd:

Digits fall off
the left and
disappear

0s come in at
the right

RSHIFT Rd, Rs, Rt Set register Rd to Rs shifted to the
right by Rt digits

RSHIFT is the same except it shifts to the right:

AND, XOR, LSHIFT, RSHIFT

0 0 1 1 0 0 1 0 0 0 1 0 1 0 0 0

Instruction
(aka opcode) Rd Rs Rt

3 = AND 2 = R2 2 = R2 8 = R8

The instruction format similar to ADD, SUB:

322816

XOR Rd, Rs, Rt Set register Rd to Rs XOR Rt
AND Rd, Rs, Rt Set register Rd to Rs AND Rt

4 = XOR 2 = R2 2 = R2 8 = R8 422816
5 = LSHIFT 2 = R2 2 = R2 8 = R8 522816
6 = RSHIFT 2 = R2 2 = R2 8 = R8 622816

LSHIFT Rd, Rs, Rt Set register Rd to Rs << Rt
RSHIFT Rd, Rs, Rt Set register Rd to Rs >> Rt

Load Indirect

LOAD.I Rd, Rt Set register Rd to ram[Rt]

1 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0

Instruction
(aka opcode) Rd ignored Rt

10 = LOAD.I 2 = R2 8 = R8

Use the value in a register as an address into RAM to read from:

A20816

What’s the analog in Go of this
operation?

Load Indirect

LOAD.I Rd, Rt Set register Rd to ram[Rt]

1 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0

Instruction
(aka opcode) Rd ignored Rt

10 = LOAD.I 2 = R2 8 = R8

Use the value in a register as an address into RAM to read from:

A20816

What’s the analog in Go of this
operation?

Pointer dereferencing with *:

var r8 *int = 70 // not legal in Go

var r2 int

r2 = *r8 // LOAD.I R2 R8

Store Indirect

STORE.I Rd, Rt Set register ram[Rt] to Rd

1 0 1 1 0 0 1 0 0 0 0 0 1 0 0 0

Instruction
(aka opcode) Rd ignored Rt

11 = LOAD.I 2 = R2 8 = R8

Use the value in a register as an address into RAM to write to:

B20816

What’s the analog in Go of this
operation?

Store Indirect

STORE.I Rd, Rt Set register ram[Rt] to Rd

1 0 1 1 0 0 1 0 0 0 0 0 1 0 0 0

Instruction
(aka opcode) Rd ignored Rt

11 = LOAD.I 2 = R2 8 = R8

Use the value in a register as an address into RAM to write to:

B20816

What’s the analog in Go of this
operation?

Pointer dereferencing with *
in an assignment:

var r8 *int = 70 // not legal in Go

var r2 int

*r8 = r2 // STORE.I R2 R8

Summary So Far

• Instructions are encoded as integers stored in memory.

• PC incremented after each instruction.

• Can read / write to memory using either an explicit address
(immediate), or the contents of another register as the address
(indirect)

• Can perform arithmetic operations on registers.

• Input / Output done via reads/writes to special memory locations.

How would we write an for loop?

Jumps: Manipulating the PC

JUMP Rd Set PC to Rd

JMP0 Rd, addr If Rd == 0, set PC to addr

15: LIMM R1, 1 // 7101
16: LIMM R5, 18 // 7518
17: LIMM R6, 0 // 7600
18: JMP0 R3, 1C // C31C
19: ADD R6, R6, R2 // 1662
1A: SUB R3, R3, R1 // 2331
1B: JUMP R5 // E500
1C: STORE R6, FF // 96FF

func mul(r2, r3 int) {
r1 := 1
r6 := 0

for r3 != 0 {
 r6 = r6 + r2
 r3 = r3 - r1
}
fmt.Print(r2)

}

If Statements

JMPP Rd, addr If Rd > 0, set PC to addr

10: LIMM r5, 16
11: SUB r2, r4, r3
12: JMPP r2, 15
13: STORE r3, FF
14: JUMP r5
15: STORE r4, FF
16:

if r3 >= r4 {
 fmt.Println(r3)
} else {
 fmt.Println(r4)
}

How would we write a condition a == b?

If Statements

JMPP Rd, addr If Rd > 0, set PC to addr

10: LIMM r5, 16
11: SUB r2, r4, r3
12: JMPP r2, 15
13: STORE r3, FF
14: JUMP r5
15: STORE r4, FF
16:

if r3 >= r4 {
 fmt.Println(r3)
} else {
 fmt.Println(r4)
}

then part

else part

condition

How would we write a condition a == b?

If Statements

JMPP Rd, addr If Rd > 0, set PC to addr

10: LIMM r5, 16
11: SUB r2, r4, r3
12: JMPP r2, 15
13: STORE r3, FF
14: JUMP r5
15: STORE r4, FF
16:

if r3 >= r4 {
 fmt.Println(r3)
} else {
 fmt.Println(r4)
}

then part

else part

condition

if condition was false
(r4-r3 > 0)

How would we write a condition a == b?

If Statements

JMPP Rd, addr If Rd > 0, set PC to addr

10: LIMM r5, 16
11: SUB r2, r4, r3
12: JMPP r2, 15
13: STORE r3, FF
14: JUMP r5
15: STORE r4, FF
16:

if r3 >= r4 {
 fmt.Println(r3)
} else {
 fmt.Println(r4)
}

then part

else part

condition

if condition was false
(r4-r3 > 0)

Skip the else part if
we did the then part

How would we write a condition a == b?

Example If Statement #2

10: LIMM r5, 16
11: SUB r2, r4, r3
12: JMP0 r2, 15
13: STORE r4, FF
14: JUMP r5
15: STORE r3, FF
16:

if r3 == r4 {
 fmt.Println(r3)
} else {
 fmt.Println(r4)
}

Example If Statement #2

10: LIMM r5, 16
11: SUB r2, r4, r3
12: JMP0 r2, 15
13: STORE r4, FF
14: JUMP r5
15: STORE r3, FF
16:

if r3 == r4 {
 fmt.Println(r3)
} else {
 fmt.Println(r4)
}

else part

then part

condition

Example If Statement #2

10: LIMM r5, 16
11: SUB r2, r4, r3
12: JMP0 r2, 15
13: STORE r4, FF
14: JUMP r5
15: STORE r3, FF
16:

if r3 == r4 {
 fmt.Println(r3)
} else {
 fmt.Println(r4)
}

else part

then part

condition
if condition was true

(r4-r3 == 0)

Example If Statement #2

10: LIMM r5, 16
11: SUB r2, r4, r3
12: JMP0 r2, 15
13: STORE r4, FF
14: JUMP r5
15: STORE r3, FF
16:

if r3 == r4 {
 fmt.Println(r3)
} else {
 fmt.Println(r4)
}

else part

then part

condition
if condition was true

(r4-r3 == 0)

Skip the then part if
we did the else part

Function Calls

some code

some other
code code
CALL fcn

RET fcn

Many processors (including Intel) have explicit “call” and
“return” instructions.

X-TOY doesn’t: it has an instruction that lets you write your
own RET (RETURN) and CALL functions:

JAL Rd, addr Set Rd to PC+1
Set PC to addr

This is “jump and link”: it jumps to an address, and saves
where you were in a register.

CALL addr JAL R15, addr

RETURN JUMP R15

⇔

⇔

Function Call Parameters

How can we pass parameters into a “function”?

Note: a function is just a block of instructions that we plan to jump into from
elsewhere in the program.

Function Call Parameters

How can we pass parameters into a “function”?

Note: a function is just a block of instructions that we plan to jump into from
elsewhere in the program.

Option 1: The caller and the function just agree about which registers to
store the parameters in:

// R2 and R3 should contain the  
// numbers to multiply; R15 should  
// contain the address to return to
15: LIMM R1, 1 // 7101
16: LIMM R5, 18 // 7518
17: LIMM R6, 0 // 7600
18: JMP0 R3, 1C // C31C
19: ADD R6, R6, R2 // 1662
1A: SUB R3, R3, R1 // 2331
1B: JUMP R5 // E500
1C: STORE R6, FF // 96FF
1D: JUMP RF // EF00

func mul(r2, r3 int) {
r1 := 1
r6 := 0

for r3 != 0 {
 r6 = r6 + r2
 r3 = r3 - r1
}
fmt.Print(r2)

}

program Mul
// Input: None
// Output: 8 * 2 = 16 = 0x10
//
10: 7208 R[2] <- 0008
11: 7302 R[3] <- 0002
12: FF15 R[F] <- pc+1; goto 15
13: 0000 halt

function mul
// Input: R2 and R3
// Return address: R15
// Output: to screen
// Temporary variables: R5, R6
15: 7101 R[1] <- 0001
16: 7518 R[5] <- 0018
17: 7600 R[6] <- 0000
18: C31C if (R[3] == 0) goto 1C
19: 1662 R[6] <- R[6] + R[2]
1A: 2331 R[3] <- R[3] - R[1]
1B: E500 goto R[5]
1C: 96FF write R[6]
1D: EF00 goto R[F]

Example Call in X-TOY

Notes:

Program starts at address 0x10

You must say the address of every line
of code by prefixing it with addr:

(FF15 sets RF to pc+1)

Option 2: Push Parameters onto the Stack

RAM

0:

FF:

Stack
FE:

Agree that the stack grows from memory address FE
downward towards 0

Agree that R14 always holds a pointer to the top of the stack

“PUSH R7”
LIMM R1, 1
ADD RE, RE, R1
STORE.I R7 RE

“POP R9”
LOAD.I R9 RE
LIMM R1, 1
SUB RE, RE, R1

Option 2: Push Parameters onto the Stack

// The top of the stack should contain the
// two numbers to multiply; R15 should  
// contain the address to return to

10: LOAD.I R2, RE // A20E
11: LIMM R1, 1 // 7101
12: SUB RE, RE, R1 // 2EE1
13: LOAD.I R3, RE // A30E
14: SUB RE, RE, R1 // 2EE1

15: LIMM R1, 1 // 7101
16: LIMM R5, 18 // 7518
17: LIMM R6, 0 // 7600
18: JMP0 R3, 1C // C31C
19: ADD R6, R6, R2 // 1662
1A: SUB R3, R3, R1 // 2331
1B: JUMP R5 // E500
1C: STORE R6, FF // 96FF
1D: JUMP RF // EF00

Grab the number at the top of the stack
“pop”: move the top of the stack  
down by 1
Grab the number at the top of the stack
move the top of the stack down by 1

How many registers are there?

16 in X-TOY
This is a typical number (6-32)

Intel processors have 6 general purpose registers in 32-bit mode, plus some others.
They have 16 general purpose registers in 64-bit mode.

What if you “run out”?

Yep, that’s a problem: you may have to shuffle variables between RAM
and registers if you need to use the registers for something.

Summary of X-TOY Computer
INSTRUCTION FORMATS

 | | | | |
 Format 1: | op | d | s | t |
 Format 2: | op | d | imm |

ARITHMETIC and LOGICAL operations
 1: add R[d] <- R[s] + R[t]
 2: subtract R[d] <- R[s] - R[t]
 3: and R[d] <- R[s] & R[t]
 4: xor R[d] <- R[s] ^ R[t]
 5: shift left R[d] <- R[s] << R[t]
 6: shift right R[d] <- R[s] >> R[t]

TRANSFER between registers and memory
 7: load immediate R[d] <- imm
 8: load R[d] <- mem[imm]
 9: store mem[imm] <- R[d]
 A: load indirect R[d] <- mem[R[t]]
 B: store indirect mem[R[t]] <- R[d]

CONTROL
 0: halt halt
 C: branch zero if (R[d] == 0) pc <- imm
 D: branch pos. if (R[d] > 0) pc <- imm
 E: jump register pc <- R[d]
 F: jump and link R[d] <- pc; pc <- imm

R[0] always reads 0.
Loads from mem[FF] come from stdin.
Stores to mem[FF] go to stdout. From the X-TOY instructions

X-TOY Environment

Intel 8088 Instruction Set

DEC Decrement by 1

INC Increment by 1

JCXZ Jump if CX is zero

JMP Jump

POP Pop data from stack

PUSH Push data onto stack

SHR Shift right (unsigned shift right)

SHL Shift left (unsigned shift left)

SUB Subtraction

XOR Exclusive OR

ADD Add

AND Logical AND

JNS Jump if not negative

and about 80 others…

Another motivation for the ++ and - -
statements in Go (and C, c++, Java..): They
correspond directly to a machine instruction.

Has several instructions to push and pop
data onto THE stack.

http://en.wikipedia.org/wiki/X86_instruction_listings#Original_8086.2F8088_instructions

http://en.wikipedia.org/wiki/JMP_(x86_instruction)
http://en.wikipedia.org/wiki/Stack_(data_structure)
http://en.wikipedia.org/wiki/Logical_shift
http://en.wikipedia.org/wiki/Exclusive_or
http://en.wikipedia.org/wiki/Logical_conjunction

MacPaint

http://www.computerhistory.org/atchm/macpaint-and-quickdraw-source-code/

