Binary Search Trees & Trees in General

02-201 / 02-601
Dictionary Abstract Data Type (ADT)

• Most basic and most useful ADT:
 • insert(key, value)
 • delete(key)
 • value = find(key)

• Many languages have it built in like Go’s map:
 - awk: D[“AAPL”] = 130
 - perl: my %D; $D[“AAPL”] = 130;
 - python: D = {}; D[“AAPL”] = 130
 - C++: map<string,string> D = new map<string, string>(); D[“AAPL”] = 130;

• Insert, delete, find each either ≈ log n steps [C++] or expected constant # of steps [perl, python]

• How can such dictionaries are implemented? — There are a number of ways; we’ll see one next.
Trees
Hierarchies

Many ways to represent tree-like information:

- linked hierarchy
- outlines, indentations
- nested, labeled parenthesis
- nested sets

Definition – Rooted Tree

- **nil** is a tree
- If \(T_1, T_2, ..., T_k \) are trees with roots \(r_1, r_2, ..., r_k \) and \(r \) is a node \(\notin \) any \(T_i \), then the structure that consists of the \(T_i \), node \(r \), and edges \((r, r_i)\) is also a tree.
Terminology

- r is the *parent* of its *children* r_1, r_2, \ldots, r_k.

- r_1, r_2, \ldots, r_k are *siblings*.

- *root* = distinguished node, usually drawn at top. Has no parent.

- If all children of a node are *nil*, the node is a *leaf*. Otherwise, the node is a *internal node*.

- A *path* in the tree is a sequence of nodes u_1, u_2, \ldots, u_m such that each of the edges (u, u_{i+1}) exists.

- A node u is an *ancestor* of v if there is a path from u to v.

- A node u is a *descendant* of v if there is a path from v to u.
Height & Depth

- The **height** of node \(u \) is the length of the longest path from \(u \) to a leaf.

- The **depth** of node \(u \) is the length of the path from the root to \(u \).

- Height of the tree = maximum depth of its nodes.

- A **level** is the set of all nodes at the same depth.

```
Depth = 0
    3

Depth = 1
    1   2

Depth = 2
    0   0   0   1

Depth = 3
    0   0   0   0
```

Numbers in nodes give heights
Subtrees, forests, and graphs

- A **subtree** rooted at u is the tree formed from u and all its descendants.

- A **forest** is a (possibly empty) set of trees. The set of subtrees rooted at the children of r form a forest.

- As we’ve defined them, trees are **not** a special case of graphs:
 - Our trees are **oriented** (there is a root which implicitly defines directions on the edges).
 - A **free tree** is a connected graph with no cycles.
Alternative Definition – Rooted Tree

- A tree is a finite set T such that:
 - one element $r \in T$ is designated the root.
 - the remaining nodes are partitioned into $k \geq 0$ disjoint sets T_1, T_2, \ldots, T_k, each of which is a tree.

This definition emphasizes the partitioning aspect of trees:

As we move down the we’re dividing the set of elements into more and more parts.

Each part has a distinguished element (that can represent it).
Binary Search Trees
Binary Search Trees (BST)

- **BST Property:** If a node has key \(k \) then keys in the left subtree are \(< k \) and keys in the right subtree are \(> k \).

- For convenience, we disallow duplicate keys.

- Good for implementing the dictionary ADT we’ve already seen: insert, delete, find.
BST Find

Find $k = 6$:
Find $k = 6$:

Is $k < 5$?
BST Find

Find $k = 6$:

Is $k < 5$? No, go right
Find $k = 6$:

Is $k < 5$? No, go right

Is $k < 8$?
BST Find

Find $k = 6$:

Is $k < 5$? No, go right

Is $k < 8$? Yes, go left
Find $k = 9$:

```
    5
   / \
  3   8
 / \ / \ 
2  4 6  11
   \
    9
```
BST Find

Find \(k = 9 \):

Is \(k < 5 \)?
BST Find

Find \(k = 9 \):

Is \(k < 5 \)? No, go right
Find $k = 9$:

Is $k < 5$? No, go right

Is $k < 8$?
BST Find

Find $k = 9$:

Is $k < 5$? No, go right

Is $k < 8$? No, go right
Find $k = 9$:

- Is $k < 5$? \textbf{No, go right}
- Is $k < 8$? \textbf{No, go right}
- Is $k < 11$?
Find $k = 9$:

- Is $k < 5$? No, go right
- Is $k < 8$? No, go right
- Is $k < 11$? Yes, go left
Find $k = 13$:
Find $k = 13$:

Is $k < 5$?
Find $k = 13$:

Is $k < 5$? No, go right
Find $k = 13$:

Is $k < 5$? **No, go right**

Is $k < 8$?
Find $k = 13$:

Is $k < 5$? No, go right

Is $k < 8$? No, go right
Find $k = 13$:

- Is $k < 5$? No, go right
- Is $k < 8$? No, go right
- Is $k < 11$?
Find $k = 13$:

- Is $k < 5$? No, go right
- Is $k < 8$? No, go right
- Is $k < 11$? No, go right

BST Find
insert(T, K):
 q = NULL
 p = T
 while p != nil and p.key != K:
 q = p
 if p.key < K:
 p = p.right
 else if p.key > K:
 p = p.left

 if p != nil: error DUPLICATE

N = new Node(K)
if q.key > K:
 q.left = N
else:
 q.right = N

Same idea as BST Find
BST Insert

```python
insert(T, K):
    q = NULL
    p = T
    while p != nil and p.key != K:
        q = p
        if p.key < K:
            p = p.right
        else:
            if p.key > K:
                p = p.left
    if p != nil: error DUPLICATE

N = new Node(K)
if q.key > K:
    q.left = N
else:
    q.right = N
```

Same idea as BST Find
BST Insert

insert(T, K):
 q = NULL
 p = T
 while p != nil and p.key != K:
 q = p
 if p.key < K:
 p = p.right
 else if p.key > K:
 p = p.left
 if p != nil: error DUPLICATE

N = new Node(K)
if q.key > K:
 q.left = N
else:
 q.right = N

Same idea as BST Find
insert(T, K):
 q = NULL
 p = T
 while p != nil and p.key != K:
 q = p
 if p.key < K:
 p = p.right
 else:
 if p.key > K:
 p = p.left
 if p != nil: error DUPLICATE

N = new Node(K)
if q.key > K:
 q.left = N
else:
 q.right = N
BST FindMin

```
  5
 /   \
3     8
 /   /   \
2   4   6   11
 /   \
1     
  
  5
 /   \
4     8
 /   /   \
1   3   6   11
```
BST FindMin

Walk left until you can’t go left any more
Walk left until you can’t go left any more
BST Delete

Node is a leaf:

Node has 1 child:

Node has 2 children:
BST Delete

Node is a leaf:

Node has 1 child:

Node has 2 children:
Node is a leaf:

Node has 1 child:

Node has 2 children:
BST Operations Summary

- **Find**: walk left or right according to the key comparison.

- **Insert**: Put the new node where a Find for it would have fallen off the tree.

- **Delete**:
 - If deleting a leaf, just remove it.
 - If deleting a node u with 1 child, move that child up to be a child of u’s parent.
 - If deleting a node u with 2 children: find the smallest key in the subtree rooted at u, delete it, and replace u with that key.
• What’s the worst possible insertion order?

• What’s the best possible insertion order?
Binary Tree Representation
BST Find Code

```go
type BSTNode struct {
    key int
    left, right *BSTNode
}
```

A node contains the data (here key) plus pointers to the left and right children.

Recursive implementation:

```go
func BSTFind(root *BSTNode, k int) *BSTNode {
    if root != nil {
        if k == root.key {
            return root
        }
        if k < root.key {
            return BSTFind(root.left, k)
        }
        if k > root.key {
            return BSTFind(root.right, k)
        }
    }
    return nil
}
```

How much memory is used?
BST Find: Non-recursive

We update “root” so that it points to the current node:
Also extended so that this returns both the node and it’s parent

```go
func BSTFind(root *BSTNode, k int) (*BSTNode, *BSTNode) {
    var parent *BSTNode = nil
    for root != nil {
        if k == root.key {
            return parent, root
        }
        parent = root
        if k < root.key {
            root = root.left
        } else if k > root.key {
            root = root.right
        }
    }
    return parent, root
}
```
func BSTInsert(root *BSTNode, k int) (*BSTNode, bool) {
 newNode := CreateBSTNode(k)
 if root == nil {
 return newNode, true
 }

 parent, current := BSTFind(root, k)
 // if key is already in the tree, report error
 if current != nil {
 return root, false
 }

 if newNode.key < parent.key {
 parent.left = newNode
 } else {
 parent.right = newNode
 }

 return root, true
}
func BSTFindMin(root *BSTNode) *BSTNode {
 if root == nil { return nil }
 for root.left != nil {
 root = root.left
 }
 return root
}
```go
func BSTDelete(root *BSTNode, k int) (*BSTNode, bool) {
    if root == nil { return nil, false }
    parent, current := BSTFind(root, k)
    if current == nil { return root, false } // didn’t find

    var pPointer **BSTNode    // !!!
    if parent != nil {
        if current.key < parent.key {
            pPointer = &parent.left
        } else {
            pPointer = &parent.right
        }
    }

    switch {
    case current.left != nil && current.right != nil:
        min := BSTFindMin(current)
        BSTDelete(current, min.key)
        current.key = min.key
    case current.left == nil && current.right == nil:
        *pPointer = nil
    case current.left != nil:
        *pPointer = current.left
    case current.right != nil:
        *pPointer = current.right
    }

    return root, true
}
```

BST Delete Code

Find the node to delete and its parent

Coding jujutsu: pPointer is a pointer to the pointer in the parent that we have to change during the delete

The delete cases depend on which children exist in the node we are deleting
Summary

- Binary search trees are a fundamental data structure supporting the “dictionary” (aka map, associative array) operations.

- The requirement that the keys be unique is not crucial: it just adds a few more special cases to the code.

- The running time of all the operations is proportional to the height of the tree.

- Standard BSTs don’t do anything to keep the height small.
More about trees
Binary Tree Traversals

inorder: HDIBEAJFCG
preorder: ABEHIECFJG
postorder: HIDEBJFGCA

func traverse(T *Node) {
 if(T != nil) {
 PREORDER(T);
 traverse(T.left);
 INORDER(T);
 traverse(T.right);
 POSTORDER(T);
 }
}

How much space is used?
Basic Properties

- Every node except the root has exactly one parent.

- A tree with \(n \) nodes has \(n-1 \) edges (every node except the root has an edge to its parent).

- There is exactly one path from the root to each node. (Suppose there were 2 paths, then some node along the 2 paths would have 2 parents.)
Binary Trees – Definition

• An **ordered** tree is a tree for which the order of the children of each node is considered important.

 ![Diagram of ordered trees]

 ![Diagram of unordered trees]

 \(r \neq \)

• A **binary tree** is an ordered tree such that each node has \(\leq 2 \) children.

• Call these two children the **left** and **right** children.
Example Binary Trees

The edge cases:

- Only left child
- Only right child
- Single node
- Empty Binary Tree

Small binary tree:
Extended Binary Trees

Every internal node has exactly 2 children.

Every leaf (external node) has exactly 0 children.

Each external node corresponds to one Λ in the original tree – let’s us distinguish different instances of Λ.

Replace each missing child with external node

Do you need a special flag to tell which nodes are external?
of External Nodes in Extended Binary Trees

Thm. An extended binary tree with \(n \) internal nodes has \(n+1 \) external nodes.

Proof. By induction on \(n \).

\(X(n) := \) number of external nodes in binary tree with \(n \) internal nodes.

Base case: \(X(0) = 1 = n + 1 \).

Induction step: Suppose theorem is true for all \(i < n \). Because \(n \geq 1 \), we have:

\[
X(n) = X(k) + X(n-k-1)
\]
\[
= k+1 + n-k-1 + 1
\]
\[
= n + 1 \quad \Box
\]
Thm. An extended binary tree with \(n \) internal nodes has \(n+1 \) external nodes.

Proof. Every node has 2 children pointers, for a total of \(2n \) pointers.

Every node except the root has a parent, for a total of \(n - 1 \) nodes with parents.

These \(n - 1 \) parented nodes are all children, and each takes up 1 child pointer.

\[
\text{(pointers)} - \text{(used child pointers)} = \text{(unused child pointers)}
\]

\[
2n - (n-1) = n + 1
\]

Thus, there are \(n + 1 \) null pointers.

Every null pointer corresponds to one external node by construction. \(\square \)
Full and Complete Binary Trees

- If every node has either 0 or 2 children, a binary tree is called **full**.

- If the lowest $d-1$ levels of a binary tree of height d are filled and level d is partially filled from left to right, the tree is called **complete**.

- If all d levels of a height-d binary tree are filled, the tree is called **perfect**.

Unfortunately, different authors use different tree terminology.
Thm. A perfect tree of height \(h \) has \(2^{h+1} - 1 \) nodes.

Proof. By induction on \(h \).

Let \(N(h) \) be number of nodes in a perfect tree of height \(h \).

Base case: when \(h = 0 \), tree is a single node. \(N(0) = 1 = 2^{0+1} - 1 \).

Induction step: Assume \(N(i) = 2^{i+1} - 1 \) for \(0 \leq i < h \).

A perfect binary tree of height \(h \) consists of 2 perfect binary trees of height \(h-1 \) plus the root:

\[
N(h) = 2 \times N(h-1) + 1
= 2 \times (2^{h-1+1} - 1) + 1
= 2 \times 2^h - 2 + 1
= 2^{h+1} - 1 \quad \square
\]

\(2^h \) are leaves
\(2^h - 1 \) are internal nodes
Thm. In a non-empty, full binary tree, the number of internal nodes is always 1 less than the number of leaves.

Proof. By induction on n.

$L(n) :=$ number of leaves in a non-empty, full tree of n internal nodes.

Base case: $L(0) = 1 = n + 1$.

Induction step: Assume $L(i) = i + 1$ for $i < n$.

Given T with n internal nodes, remove two sibling leaves.

T' has $n-1$ internal nodes, and by induction hypothesis, $L(n-1) = n$ leaves.

Replace removed leaves to return to tree T.

Thus: $L(n) = n + 2 - 1 = n + 1$.

Array Implementation for Complete Binary Trees

left(i): $2i$ if $2i \leq n$ otherwise 0
right(i): $(2i + 1)$ if $2i + 1 \leq n$ otherwise 0
parent(i): $\lfloor i/2 \rfloor$ if $i \geq 2$ otherwise 0
Summary

• Trees are an incredibly common way to organize data:
 • folders on your hard drives
 • URLs: http://www.cs.cmu.edu/~ckingsf/software/sailfish
 • BST, Splay trees, AVL trees, B-trees, Quad-trees, kd-trees, red-black trees, M-trees, … probably thousands of variants that are good for different data and different queries.

• Binary trees in particular are nice because each node partitions the data into 2 subsets and because there are nice relationships between # of nodes and # of leaves, etc.

• Typically, trees are represented using nodes & pointers, though this does not have to be the case.