
Stacks and Queues
02-201 / 02-601

Another Slice and String Example

Repeated String Replacement

We’re given a set of rules of the following form:

A → some sequence of letters

Example:
A → B−A−B"
B → A+B+A

We want to start with some string (say “A”) and repeatedly apply the rules:

that say “change A into the given sequence of letters”

A"
B-A-B"
A+B+A-B-A-B-A+B+A

All the rules get applied simultaneously.

Lindenmayer Systems

A → B−A−B"
B → A+B+A

Suppose we give a meaning to each of the symbols that
give instructions to a turtle sitting on a piece of paper:
"
• A and B: draw line forward in the direction you’re facing
• -: turn right by 60°
• +: turn left by 60°

A+B+A-B-A-B-A+B+A

A
+ B

+

A
-

B

-
A

-

B
-

A

+

B +
A

A"
B-A-B

→

More iterations!

→ Sierpinski triangle

Another Example Lindenmayer System

X → F-[[X]+X]+F[+FX]-X"
F → FF

• F: draw forward
• -: turn left 25°
• +: turn right 25°
• X: do nothing
• [: save the current position & direction
•]: restore the most-recently saved position & direction

X → F-[[X]+X]+F[+FX]-X

save restore

First Attempt to code Lindenmayer Systems

func lindenmayer(lhs, rhs []string, start string, steps int) {!
 var curString, nextString = "", start!
 !
 for i := 0; i < steps; i++ {!
 curString = nextString!
"
 // apply every rule!
 for i, a := range lhs {!
 nextString = strings.Replace(nextString, a, rhs[i], -1)!
 }!
"
 fmt.Println(nextString)!
 }!
}!
"
func main() {!
 var lhs = []string{ "A", "B", "C"}!
 var rhs = []string{ "BAB", "AC", "c" }!
"
 lindenmayer(lhs, rhs, "A")!
}

AcAAc
AcAAccAcAAcAcAAcc
AcAAccAcAAcAcAAcccAcAAccAcAAcAcAAccAcAAccAcAAcAcAAccc
AcAAccAcAAcAcAAcccAcAAccAcAAcAcAAccAcAAccAcAAcAcAAccccAcAAccAcAAcAcAAcccAcAAccAcAAcAcAAcc…

Problem! It doesn’t apply all the rules at once!
After replacing the first A with BAB, it will replace the Bs with AC, and then
replace the Cs with c all in the first step.

Live Coding: Updated (Correct?)
Lindenmayer Program

Stacks

Stack Data Structure

• push(S, Item): put an item Item
onto the top of the stack S.

• Item = pop(S): set Item to the item
at the top of the stack S and
remove the top item.

50

3

27

38

stack S

222push(S, 222) pop(S)

pop(S)

push(S, 50); push(S, 3); push(S, 834); pop(S); push(S, 27); push(S, 5555); pop(S); push(S, 38)

How would you reverse a list of integers?

-1, -30, 60, 21, 33, 78, 64 → 64, 78, 33, 21, 60, -30, -1

var list []int var reversedList []int

func reverse(in []int) []int {!
"
 S := createStack()!
 for _, v := range in {!
 push(S, v)!
 }!
"
 var v int!
 var out []int = make([]int,0)!
"
 for len(S) != 0 {!
 S, v = pop(S)!
 out = append(out, v)!
 }!
 return out!
}

64
78
33
21
60
-30
-1
S

78
33
21
60
-30
-1

33
21
60
-30
-1

21
60
-30
-1

60
-30
-1

"

-30
-1

"
"

-1

64 78 33 21 60 -30 -1

Each time through the green loop,
the top of the stack is removed and
added to the end of out:

out

How would you implement “[“ and “]” when drawing
the Lindenmayer system we saw?

• F: draw forward
• -: turn left 25°
• +: turn right 25°
• X: do nothing
• [: save the current position & direction
•]: restore the last saved position & direction

F-[[X]+X]+F[+FX]-X →

When you see [the the current position and direction onto a
stack
"
When you see] pop the top position and direction from the
stack and set the current position and direction to them

(50,50) 75°

(102, 34) 325°

(1,70) 50°(12,700) 100°

(80, 80) 300°

stack S
F-[[X[+X][-[X]+]X-]X+]

(The string and angles in this example aren’t real — they’re just placeholders)

Stack Implementation

func pop(S []int) ([]int, int) {!
 if len(S) == 0 {!
 panic(“Can’t pop empty stack!")!
 }!
 item := S[len(S)-1]!
 S = S[0:len(S)-1]!
 return S, item!
}

func push(S []int, item int) []int {!
 return append(S, item)!
}

func createStack() []int {!
 return make([]int, 0)!
}

func main() {!
 S := createStack()!
"
 S = push(S, 1)!
 S = push(S, 10)!
 S = push(S, 13)!
 fmt.Println(S)!
"
 S, item := pop(S)!
 fmt.Println(item)!
"
 S, item = pop(S)!
 fmt.Println(item)!
"
 S, item = pop(S)!
 fmt.Println(item)!
}

Stacks vs. Queues

Stack:
top

fro
nt

back

Queue:

push, pop

enqueue, dequeue

aka LIFO

aka FIFO

LIFO = last-in, first-out

FIFO = first-in, first-out

More Example Uses

• Stacks useful to save subproblems to solve later.!

• Every time you type in Microsoft Word, it adds what you typed to
a stack. !

• Control-Z pops the last thing you did and undoes it.!

"

• Queues useful for processing events. !

• Every time you click your mouse, where you clicked is added to a
queue.!

• The computer processes the clicks in the order you did them.

Summary

• Lindenmayer systems are a cute idealization of branching and
evolving systems.

• Stacks are a data structure that is like a list except you can only
access one end of the list with:

• push: add something to the top of the list

• pop: remove the top thing on the list

• Queues are lists where we add things to one end and take things
from the other. Queues keep the items in order.

