
Arrays and Slices
02-201 / 02-601

Arrays

Arrays Store Lists of Variables

3 12 3 3 7 8 10 -2 30 6 11 11 11 32 64 80 99 -1 0 12

• A list of filenames

• A list of prime numbers

• A column of data from a spreadsheet

• A collection of DNA sequences

• Factors of a number

• etc.

Arrays are fundamental data structures
Useful whenever you have a collection of

things you want to work with together.

Declaring Arrays

var a [10]int!

var b [100]string!

var c [10*10]float64

Declares arrays of the given type and length.

Expression inside the [] must be constant when array is declared  
(it can’t depend on variables or function calls):

var d [10-6 + 2]int ! // ok!

var size int = 10000!

var e [size]int ! ! // ERROR! “size” is not a constant

13 18 -2 10 11 10 -22 8 8 7 -30 -33 -22 12 99 98 97 6 -3 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19index into array:

array elements:

a[0] a[5] a[i] a[i+3]

Accessing and Changing Array Elements

fmt.Println(a[7],a[8])!
a[0] = 10!
b[30] = “hi there”!
i := 12 + 2!
c[i] = 3.1!
c[2*i] = c[i]

Array elements can be accessed by putting their index between [] following the array
name:

x[i] can appear on left-hand side of assignment
to set a value.

• The length of an array can be found with len(x), where x is an array.

• Array indices start at 0! The first element is x[0].

• The last element is at index len(x) - 1.

• It’s an error to try to access elements past the end of the array:

var d [100]int!
d[0] = 2 ! ! ! // ok!
d[99] = 70 ! ! ! // ok!
var j int = 100!
fmt.Println(d[j]) ! // ERROR!

d[len(d)-1] = 3 !// OK!
d[len(d)] = 3 ! // ERROR!!
d[-60] = 7 ! ! // ERROR!

os.Args[i]

Computing Prime Numbers

func primeSieve() {!

 var isComposite [100000000]bool // isComposite[i] will be true if i is not prime!

 var biggestPrime = 2 // will hold the biggest prime found so far!

 for biggestPrime < len(isComposite) {!

 fmt.Println(biggestPrime)!

 // knock out all multiples of biggestPrime!

 for i := 2*biggestPrime; i < len(isComposite); i += biggestPrime {!

 isComposite[i] = true!

 }!

 // find the next biggest non-composite number!

 biggestPrime++!

 for biggestPrime < len(isComposite) && isComposite[biggestPrime] {!

 biggestPrime++!

 }!

 }!

}

The “Sieve of Eratosthenes” is a very old algorithm for finding prime numbers:

This will print all the prime numbers ≤ 100,000,000.

Why does this work?

F F F F F F F F F F F F F F F F F F F F

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

biggestPrime

isComposite:

index into array:

F F F F T F T F T F T F T F T F T F T F

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

biggestPrime

At start of outer for loop:

First inner for loop sets all multiples of biggestPrime to be TRUE:

all array
elements start

at false

F F F F T F T F T F T F T F T F T F T F

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

biggestPrime

Second inner for loop increments biggestPrime until it finds a non-composite number:

Next time through the outer loop, multiples of 3 will be marked as composite, etc.

Shortcut && and ||

for biggestPrime < len(isComposite) && isComposite[biggestPrime] {!
 biggestPrime++!
}

Consider this loop from primeSieve():

What happens when biggestPrime == len(isComposite)?

• The green (first) condition is false

• The red (second) condition is an ERROR

• So does this program have a bug? No:

The && and || operators work from left to right and stop once their truth value can be
determined.
"
Once the green condition is false, there’s no way for the whole expression to be true,
so in that case, the red condition is never evaluated.

For Range

var list [10]int !
"
for i := range list {!
 list[i] = -(i - 6)*(i-6)!
}!
fmt.Println(list)!
"
var max, pos int!
for j, v := range list {!
 if j == 0 || v > max {!
 max = v!
 pos = j!
 }!
}!
"
fmt.Println("Max value is", max, "at", pos)

iterates over the indices
of array. i will equal  
 0,1,2,…,9  
in turn.

if you provide 2
variables, for…range
will iterate over the
indices and values of
the array:

[-36 -25 -16 -9 -4 -1 0 -1 -4 -9]

will print:

0 -36
1 -25
2 -16
3 -9
4 -4
5 -1
6 0
7 -1
8 -4
9 -9

j v

Use for … range to avoid having to compute indices yourself.

Blank Identifier

func sum(A [10]int) {!
 var result int!
 for i, val := range A {!
 result = result + val!
 }!
 return result!
}

ERROR! Variable i is declared but never used.
"
This is an error in Go.
"
How do we use the for…range loop if we don’t
want the index?

The blank identifier _ (a single underscore) can be
used when you need to provide a variable name,
but don’t care about the value.
"
_ is always “defined” and has whatever type(s) it
needs to.

func sum(A [10]int) {!
 var result int!
 for _, val := range A {!
 result = result + val!
 }!
 return result!
}

Multidimensional Arrays

func selfAvoidingRandomWalk(steps int) {!
 var field [10][10]bool!
 var x, y = len(field)/2, len(field)/2!
"
 field[x][y] = true!
 fmt.Println(x,y)!
"
 for i := 0; i < steps; i++ {!
 // repeat until field is empty!
 xnext, ynext := x, y!
 for field[xnext][ynext] {!
 xnext, ynext = randStep(x, y, 10)!
 }!
 x, y = xnext, ynext!
 field[x][y] = true!
 fmt.Println(x,y)!
 }!
}

Can reuse our randStep() function
from a previous lecture.

Repeat until we walk to a square
that hasn’t been visited

Declare a 2d array as shown.
"
Can declare arrays of higher
dimension as well.

0

1
2
3

4

0 1 3 4

field[1][3]

Arrays are Copied When Passed to Functions

func maxValue(A [10000000]int) int {!
 m := 0!
 for i := range A {!
 if A[i] > m {!
 m = A[i]!
 }!
 }!
 return m!
}!
"
func main() {!
 var numbers [10000000]int!
"
 // fill numbers with random integers!
 for i := range numbers {!
 numbers[i] = rand.Int()!
 }!
"
 fmt.Println(maxValue(numbers))!
}

Slices (up next) fix both of these problems.

A new array A is created
and the contents from
numbers is copied over.
"
This is wasteful of
memory if the array is
large.

maxValue() will only
work for arrays of 10
million elements.
"
But nothing in the
maxValue code wouldn’t
work for arrays of
different sizes.

Arrays Summary

• Declare an array variable with: var name [size]type
• size must be a constant expression  

(you must know its value when you write your program).

• type can be any type, even another array type (e.g. [10][10]int)

• The length of an array can be found with: len(name)

• name[i] is a variable that is the ith element of the array
• name[0] is the first element of the array.

• Arrays are copied when passed to functions: the function only sees
a copy of the array.

Summary

• Arrays store collections of variables of the same type.

• Arrays have a fixed size that is determined when you write your
program.

