02-201, Fall 2015, Carl Kingsford

Lecture 1: What is a computer?

0. Today's Topics

e Basic computer architecture
e How the computer represents data

1. What is a computer?

A modern computer is a collection of many components: the display, a keyboard, a disk drive, speakers,
camera, microphone, network connection, etc.

The two most important components are:

¢ the Central Processing Unit (CPU): a compact electronic chip that executes simple instructions. This is
the part that "computes".
o the Random Access Memory (RAM): this is the part that remembers the results of the computation.

0OS X Yose.'"ite

MacBook Pro (Reting, 15-inch, Late 2013)

It is these two components we will be thinking about most directly in this class.

1.a. A mental image of the computer

Program Counter register 0
. registers hold small
register 1 amounts of data for
, rocessing by the
CPU register 2 ?DPU 9By
CPU performs register 3
operations on data
in registers (add, .
Reading / writing to subtract, etc.) register n
some special memory .
addresses may cause registers & RAM
peripheral devices like store data as
disk, display, etc. to binary numbers
perform a task \/
ol vo~Nolo TN I|V|E
eIl P90 P v|lo|lD|D|D| DT
RAM: c|c|oc|c|oc|lc|c|o|c|lo|5 5|55 55|06
- I I - I O O A~ S B~ I~ I

e The CPU has a number of registers that can each hold a number. The number of registers is small
(modern "64-bit" Intel processors have 16 general purpose registers).

¢ RAM is broken down into words, each of which can hold a number. The number of words depends on how
much memory your computer has. 16 gigabytes = about 2 billion words.

1.b. Some operations that the CPU can perform
The operations that the CPU can perform are generally very simple.
Examples:
o Setthe value of a register to a given number x:
Ri « x
e Add, subtract, or multiply two numbers in registers and put the result in a register:
Ri < Rj + Rk

e Copy a number from a register into a memory location:

RAM at location i « Rj
¢ Copy a number from a memory location into a register:
Ri < RAM at location j

There are many other operations that a CPU can do, but most are these kind of simple operations on integers.
We will see other operations soon.

1.c. Example: Computing the value of a polynomial
Suppose we want to evaluate this polynomial:
yx? + 4xy + 3x — 3

forx = 10,y = 2. We would have to ask the CPU to perform the following instructions:

1. R1 « 10 Set the value of register 1 (R1) to 10 (x).
2. R2 «2 Set the value of register 2 (R2) to 2 (y).
3. R3 « R1 XRI Multiply R1 by R1 and store the result in R3.
4. R3 « R2 X R3 Multiply R2 by R3 and store the result in R3.
5. R4 « R1 X R2 Multiply R1 by R2 and store the result in R4.
6. R5 <« 4 Set R5 to the value "4".
7. R4 < R4 X RS Multiply R4 by R5 and store the result in R4.
8. R3 <R3+ R4 Add R3 and R4 and store the result in R3.
9. R5 « 3 Set R5 to the value "3".
10. R1 < R1 X R5 Multiply R1 by R5 and store the result in R1
11. R1 <« R1 + R3 Add R1 and R3 and store the result in R1
12. R1 « R1 — R5 Subtract R5 from R1 and store the result in R1
13. RAM at location 100 < R1 Store R1 into memory location 100

The answer is now in RAM at location 100.
We had to be very explict about each step and where the result of each step would be stored.

Note that we reused registers when we wanted to. When we reuse them, their contents are replaced by
something new. The choice of registers we used (R1-R5) was arbitrary, and there are lots of other ways we
could have writen the steps (e.g. by doing the operations in a different order).

Test yourself! What are the contents of registers R1 through R5 before line 6 above?

Test yourself! Write down a program in the style above to compute the value of the polynomial
2x3y + 3x% — Txy.

1.d. How could we write the same thing in Go?

A programming language lets us avoid the tedium of writing down each instruction the computer must execute.
We still have to be very explict about what we want the machine to do, but we can do it at a higher level:

package main
import "fmt"

func main() {
var x = 10
var y = 2
var answer = y*x*x + 4*x*y + 3*x - 3
fmt.Println(answer)

Exercise: Run this program at http://play.golang.org. Change the values of x and y to see how the

answer changes.

Looking ahead: Guess how you might rewrite the above Go program to avoid using the variable
answer , and only have variables x and y . Testto see if your solution works at
http://play.golang.org.

2. How data is represented in the computer

The registers and RAM are make up of many tiny switches, each of which can either be on or off:

register 3:

PSR PSR e, e,

011 00001100100 0O0 1

We use 0 to represent "off" and 1 to represent "on". Each one of the switches is a bit.

A computer is called a "64-bit" computer if its registers are 64-bits long (loosely speaking).

Eight switches in a row is a byte.

http://play.golang.org/
http://play.golang.org/

unit size

bit 1 switch
byte 8 bits
kilobyte 210 = 1024 bytes

megabyte = 220 = 1,048,576 bytes (approximately 1 million bytes)
gigabyte 230 = 1,073,741,824 bytes (approximately 1 billion bytes)
terabyte 240 = 1,099,511,627,776 bytes (approximately 1 trillion bytes)

petabyte 250 = 1000 terabytes

(Note that in some situations kilo-, mega-, giga-, tera- and petabytes are defined to be 1000, 1000000, 1 billion,
1 trillion, 1000 trillion exactly.)

2.a. Binary: how a computer represents numbers

With only the digits 0 and 1, the computer can't represent numbers in base 10. Instead, it must use base 2 (aka
binary). You're all familar with how base-10 notation works:

Base 10 (decimal) notation:

42560

6x100
5x101
2x102
+ 4x103

42560

Binary works the same way, with 10 replaced by 2:

Base 2 (binary) notation:
1000010100000

1 0x20
L 0x2
: 1§ Ox22
i Ox2s
- Ox24
iy 1x28
., Ox28
5 Tlik27
: - OKEB
1 Ox2°
. Ox210
S Ox21
+ 1x212
4256= 1000010100000
Using binary notation, we can represent any integer.
Test yourself! How is the binary number 101010 represented in decimal notation?
Test yourself! What is 327 in binary?

Test yourself! What is the largest number you can represent with n bits?

2.b. Hexadecimal: a more convenient notation

As you can see from the above example, binary notation can get unwieldy fast. Instead, we often use base 16,
also known as hexadecimal:

Base 16 (hexadecimal) notation:

1040

. Ox160
. Ax16!
. 0x162

+ 1x16°

1x4096 + 10x16 = 4256

This works the same way as binary, and base 10, but using "16" as the base. The one additional trick is that

since we need 16 different digits, we use
0,1,2,3,4,5,6,78,9,A,B,C,D,E,F
where A=10, B=11, C=12, D=13, E=14, and F=15.

Often, a hexadecimal number is written with 0x before it to distinguish it from a decimal number.
Test yourself! What is OxFF in decimal?
Test yourself! What is OxF2 in binary?
Test yourself! What is 256 in hexadecimal?
Test yourself! What is 515 in base 8 (also known as octal)?
Test yourself! Why is base 16 often used instead of (say) base 20 or 67

Thinking ahead: How might you represent negative numbers? What about a real number between 0 and
1.

2.c. Using numbers to represent text

Obviously, computers can do more than arithmetic: they can operate on text, graphics, music, and many other
kinds of data. How do they do this?

A string is a sequence of characters in sequence:

H e I | o , W o r I d

A

Each item in a string is
called a character.

If a computer can only deal with Os and 1s, how does it represent an "H"?

The answer is we assign every character to integer, and everyone agrees on the integer for "H" (and every
other letter). In other words, we map each character to an integer.

An early standard for doing this was ASCII ("American Standard Code for Information Interchange",
pronounced askey):

Binary D Glyphi Binary Dae Glyph Binary Dae Glyph
010 0000 32 | (scacel 100 0000 B4 & 110 0000 '
010 0001 a3 ! 100 0001 B5 A 110 0001 a
010 0010 34 " 100 0010 BE B 110 0010 b
010 0811 a5 # 100 0011 BT c 110 D011 c
010 0100 36] 100 0100 %] D 110 0100 100 d
210 0101 a7 i) 100 0101 (=] E 110 0101 101 B
0100110 a8 & 100 0110 Fit] F 1100110 102 i
0100111 a9 100 0111 Fil | G 110 0111 103 g
010 1000 40 | 100 1000 72 H 110 1000 104 h
010 1001 41 : 100 1001 73 | 110 1001 105
010 1010 42 . 100 1010 74 J 190 1010 106 I
010 1811 43 + 100 1011 75 K 110 1011 107 "
010 1100 44 , 100 1100 76 L 110 1300 108
i | % | mun | | woior | 1w |
010 1111 47 / 100 1111 79 o 1:211:11? :115' 2
011 0000 48] 101 0000 B =
011 0001 49 1 101 0001 B1 a L L o
011 0010 50 2 101 0010 B2 B LR = g
011 0011 51 a 101 0011 B3 s 111 0010 hl r
011 0100 52 4 101 0100 B4 T At oo RilEe 3
011 0101 53 5 101 0101 B5 u 1110100 | 1186 t
0110110 54 B 101 0110 B6 v il S U
011 0111 55 7 101 0111 BT W 110110 ne Ll
011 1000 56 & 101 1000 BB X 11 0111 na w
011 1001 57] 101 1001 Y 111 1000 120 x
011 1010 58 : 101 1010 g0 Z 111 1001 121 Y
011 1014] : 101 1011 g1 [111 1010 122 z
011 1100 B0 < 101 1100 g2 Y 111 1011 123 {
011 1101 61 = 101 1101 53] 111 1100 124
011 1110 B2 P 101 1110 o4 A 111 1101 125 }
o1 1111 B3 7 101 1111 85 111 1110 126 ~

You don't need to know those numbers.

Why is 'a' mapped to '97'? No particular reason. It's just what everyone agreed on.

Nowadays, the much more extensive Unicode standard is used. It maps thousands of letters to integers. For

example 0x1f601 = & .

2.d. Digital representation of sound
Sound is a continuous motion of air. How can a computer record, playback, and manipulate it?

The sound wave is digitized, and recorded using a format that everyone agrees on. In this way, sound is turned

into a stream of integers:

Left

16 bit amplitude
16 bit amplitude
16 bit amplitude
16 bit amplitude
16 bit amplitude
16 bit amplitude
16 bit amplitude

44 100 numbers per second

The number of samples per second limits the frequency that the signal can represent. The number of bits per
sample limits the aplitudes that can be recorded. This digitization process introduces some error due to the

inability to represent perfectly a continuous signal.

There are many different audio encoding standards, but each boils down to representing the wave as a

sequence of numbers.

2.e Digital representation of images

We face th same problem with images: they are a continuum of light across a continuum of colors.

Representing colors:
One encoding for colors is to map them to 3 numbers:

e The amount of green in the color
e The amount of red in the color
e The amount of blue in the color

Each of the above 3 numbers might be represented by an 8 bit integer (i.e. a number between 0 and 255). So

that:
PURPLE is 170 red, 0 green, 255 blue
This is called an RGB encoding (for "red, green, blue").

These colors are often written in hexadecimal, so that the above is OxAAOOFF, where the first 2 digits are the
amount of red, the second 2 digits are the amount of green, and the last two digits are the amount of blue.

(In HTML, this would be written as #AAO0OFF , where the # denotes hexadecimal.)
There are many color encoding schemes, some that use other colors besides red, green, and blue.
Test yourself! What coloris #000000 ? Can you find out? What about #FFFFFF ?

Test yourself! What is the code for a gray color using this RGB encoding scheme?
Representing images:

An image is a 2-dimensional matrix of pixels, which are digitized units of light. The color of the light at each
pixel is encoded using some color encoding such as RGB:

IMAGE —_— >

rgb(100, 170, 0)

The resolution of the image is the dimension of the pixel matrix. A 10 megapixel camera has sensors for
around 10 million pixels.

3. Summary

e Computers represent data in binary.

e The data can be stored in memory or in the CPU registers.

e The CPU can perform relatively simplistic operations on the data.

¢ Real impact of computers come from representing rich, continuous, real-world data as a sequence of bits.
e This is done by agreeing on a mapping from the real world to a sequence of bits.

Glossary

CPU: the central processing unit that can execute instructions.
RAM: random access memory that stores results of computation, can be accessed by address.
reqister: a storage unit in the CPU that is comprised of several bits.

word: a unit of RAM that can be accessed.

address: the "name" or location of a word in RAM.

bit: a single storage unit that can be either on or off.

byte: 8 bits.

base 2 or binary: representation of numbers using only the digits 0 and 1.

hexadecimal: representation of numbers using the digits 0-9 and A-F.

octal: representation of numbers using the digits 0-7.

"0x": a prefix commonly written before hexadecimal numbers so they are not mistaken for decimal or octal
numbers.

string: a sequence of characters.

character: a single letter or symbol within a string.

ASCII: a standard for mapping characters to integers.

Unicode: a modern standard for mapping characters, emaoji, etc. to integers.

RGB: stands for "red, green, blue" -- an encoding scheme for colors.

pixel: a unit of a digitized image.

