
02-201, Fall 2015, Carl Kingsford

Basic computer architecture
How the computer represents data

A modern computer is a collection of many components: the display, a keyboard, a disk drive, speakers,
camera, microphone, network connection, etc.

The two most important components are:

the Central Processing Unit (CPU): a compact electronic chip that executes simple instructions. This is
the part that "computes".
the Random Access Memory (RAM): this is the part that remembers the results of the computation.

It is these two components we will be thinking about most directly in this class.

Lecture 1: What is a computer?

0. Today's Topics

1. What is a computer?

1.a. A mental image of the computer

The CPU has a number of registers that can each hold a number. The number of registers is small
(modern "64-bit" Intel processors have 16 general purpose registers).

RAM is broken down into words, each of which can hold a number. The number of words depends on how
much memory your computer has. 16 gigabytes = about 2 billion words.

The operations that the CPU can perform are generally very simple.

Examples:

Set the value of a register to a given number :

Add, subtract, or multiply two numbers in registers and put the result in a register:

Copy a number from a register into a memory location:

1.b. Some operations that the CPU can perform

x

Ri ← x

Ri ← Rj + Rk

Copy a number from a memory location into a register:

There are many other operations that a CPU can do, but most are these kind of simple operations on integers.
We will see other operations soon.

Suppose we want to evaluate this polynomial:

for . We would have to ask the CPU to perform the following instructions:

1. Set the value of register 1 (R1) to 10 ().
2. Set the value of register 2 (R2) to 2 ().
3. Multiply R1 by R1 and store the result in R3.
4. Multiply R2 by R3 and store the result in R3.
5. Multiply R1 by R2 and store the result in R4.
6. Set R5 to the value "4".
7. Multiply R4 by R5 and store the result in R4.
8. Add R3 and R4 and store the result in R3.
9. Set R5 to the value "3".

10. Multiply R1 by R5 and store the result in R1
11. Add R1 and R3 and store the result in R1
12. Subtract R5 from R1 and store the result in R1
13. Store R1 into memory location 100

The answer is now in RAM at location 100.

We had to be very explict about each step and where the result of each step would be stored.

Note that we reused registers when we wanted to. When we reuse them, their contents are replaced by
something new. The choice of registers we used (R1-R5) was arbitrary, and there are lots of other ways we
could have writen the steps (e.g. by doing the operations in a different order).

Test yourself! What are the contents of registers R1 through R5 before line 6 above?

Test yourself! Write down a program in the style above to compute the value of the polynomial
.

RAM at location i ← Rj

Ri ← RAM at location j

1.c. Example: Computing the value of a polynomial

y + 4xy + 3x − 3x2

x = 10, y = 2

R1 ← 10 x
R2 ← 2 y
R3 ← R1 × R1
R3 ← R2 × R3
R4 ← R1 × R2
R5 ← 4
R4 ← R4 × R5
R3 ← R3 + R4
R5 ← 3
R1 ← R1 × R5
R1 ← R1 + R3
R1 ← R1 − R5
RAM at location 100 ← R1

2 y + 3 − 7xyx3 x2

A programming language lets us avoid the tedium of writing down each instruction the computer must execute.
We still have to be very explict about what we want the machine to do, but we can do it at a higher level:

Exercise: Run this program at http://play.golang.org. Change the values of x and y to see how the
answer changes.

Looking ahead: Guess how you might rewrite the above Go program to avoid using the variable
answer , and only have variables x and y . Test to see if your solution works at

http://play.golang.org.

The registers and RAM are make up of many tiny switches, each of which can either be on or off:

We use 0 to represent "off" and 1 to represent "on". Each one of the switches is a bit.

A computer is called a "64-bit" computer if its registers are 64-bits long (loosely speaking).

Eight switches in a row is a byte.

2 y + 3 − 7xy

1.d. How could we write the same thing in Go?

package	 main
import	 "fmt"

func	 main()	 {
	 	 	 	 var	 x	 =	 10
	 	 	 	 var	 y	 =	 2
	 	 	 	 var	 answer	 =	 y*x*x	 +	 4*x*y	 +	 3*x	 -‐	 3
	 	 	 	 fmt.Println(answer)
}

2. How data is represented in the computer

http://play.golang.org/
http://play.golang.org/

unit size

bit 1 switch

byte 8 bits

kilobyte 210 = 1024 bytes

megabyte 220 = 1,048,576 bytes (approximately 1 million bytes)

gigabyte 230 = 1,073,741,824 bytes (approximately 1 billion bytes)

terabyte 240 = 1,099,511,627,776 bytes (approximately 1 trillion bytes)

petabyte 250 = 1000 terabytes

(Note that in some situations kilo-, mega-, giga-, tera- and petabytes are defined to be 1000, 1000000, 1 billion,
1 trillion, 1000 trillion exactly.)

With only the digits 0 and 1, the computer can't represent numbers in base 10. Instead, it must use base 2 (aka
binary). You're all familar with how base-10 notation works:

Binary works the same way, with 10 replaced by 2:

2.a. Binary: how a computer represents numbers

Using binary notation, we can represent any integer.

Test yourself! How is the binary number 101010 represented in decimal notation?

Test yourself! What is 327 in binary?

Test yourself! What is the largest number you can represent with bits?

As you can see from the above example, binary notation can get unwieldy fast. Instead, we often use base 16,
also known as hexadecimal:

n

2.b. Hexadecimal: a more convenient notation

This works the same way as binary, and base 10, but using "16" as the base. The one additional trick is that
since we need 16 different digits, we use

0,1,2,3,4,5,6,78,9,A,B,C,D,E,F
where A=10, B=11, C=12, D=13, E=14, and F=15.

Often, a hexadecimal number is written with 0x before it to distinguish it from a decimal number.

Test yourself! What is 0xFF in decimal?

Test yourself! What is 0xF2 in binary?

Test yourself! What is 256 in hexadecimal?

Test yourself! What is 515 in base 8 (also known as octal)?

Test yourself! Why is base 16 often used instead of (say) base 20 or 6?

Thinking ahead: How might you represent negative numbers? What about a real number between 0 and
1.

Obviously, computers can do more than arithmetic: they can operate on text, graphics, music, and many other
kinds of data. How do they do this?

A string is a sequence of characters in sequence:

2.c. Using numbers to represent text

If a computer can only deal with 0s and 1s, how does it represent an "H"?

The answer is we assign every character to integer, and everyone agrees on the integer for "H" (and every
other letter). In other words, we map each character to an integer.

An early standard for doing this was ASCII ("American Standard Code for Information Interchange",
pronounced askey):

You don't need to know those numbers.

Why is 'a' mapped to '97'? No particular reason. It's just what everyone agreed on.

Nowadays, the much more extensive Unicode standard is used. It maps thousands of letters to integers. For
example 0x1f601 = 😁 .

Sound is a continuous motion of air. How can a computer record, playback, and manipulate it?

The sound wave is digitized, and recorded using a format that everyone agrees on. In this way, sound is turned
into a stream of integers:

The number of samples per second limits the frequency that the signal can represent. The number of bits per
sample limits the aplitudes that can be recorded. This digitization process introduces some error due to the
inability to represent perfectly a continuous signal.

There are many different audio encoding standards, but each boils down to representing the wave as a
sequence of numbers.

We face th same problem with images: they are a continuum of light across a continuum of colors.

One encoding for colors is to map them to 3 numbers:

The amount of green in the color
The amount of red in the color
The amount of blue in the color

Each of the above 3 numbers might be represented by an 8 bit integer (i.e. a number between 0 and 255). So

2.d. Digital representation of sound

2.e Digital representation of images

Representing colors:

that:

PURPLE is 170 red, 0 green, 255 blue

This is called an RGB encoding (for "red, green, blue").

These colors are often written in hexadecimal, so that the above is 0xAA00FF, where the first 2 digits are the
amount of red, the second 2 digits are the amount of green, and the last two digits are the amount of blue.

(In HTML, this would be written as #AA00FF , where the # denotes hexadecimal.)

There are many color encoding schemes, some that use other colors besides red, green, and blue.

Test yourself! What color is #000000 ? Can you find out? What about #FFFFFF ?

Test yourself! What is the code for a gray color using this RGB encoding scheme?

An image is a 2-dimensional matrix of pixels, which are digitized units of light. The color of the light at each
pixel is encoded using some color encoding such as RGB:

The resolution of the image is the dimension of the pixel matrix. A 10 megapixel camera has sensors for
around 10 million pixels.

Computers represent data in binary.
The data can be stored in memory or in the CPU registers.
The CPU can perform relatively simplistic operations on the data.
Real impact of computers come from representing rich, continuous, real-world data as a sequence of bits.
This is done by agreeing on a mapping from the real world to a sequence of bits.

Representing images:

3. Summary

CPU: the central processing unit that can execute instructions.
RAM: random access memory that stores results of computation, can be accessed by address.
register: a storage unit in the CPU that is comprised of several bits.
word: a unit of RAM that can be accessed.
address: the "name" or location of a word in RAM.
bit: a single storage unit that can be either on or off.
byte: 8 bits.
base 2 or binary: representation of numbers using only the digits 0 and 1.
hexadecimal: representation of numbers using the digits 0-9 and A-F.
octal: representation of numbers using the digits 0-7.
"0x": a prefix commonly written before hexadecimal numbers so they are not mistaken for decimal or octal
numbers.
string: a sequence of characters.
character: a single letter or symbol within a string.
ASCII: a standard for mapping characters to integers.
Unicode: a modern standard for mapping characters, emoji, etc. to integers.
RGB: stands for "red, green, blue" -- an encoding scheme for colors.
pixel: a unit of a digitized image.

4. Glossary

