
02-201 / 02-601 Homework 8:
One-time Pad Encryption in Machine Code

Due: 11:59pm on Thursday, November 20

1. Set up

Download and run X-TOY from its website: http://introcs.cs.princeton.edu/xtoy/.

Do this today to make sure you can run it on your machine.

2. Assignment

2.1 One-time Pad Encryption

Often we have a message that we want to keep secret from some third party. For example, we
want to email someone our social security number, but don’t want anyone who intercepts our email
to be able to read it. There are many such encryption schemes, and designing good encryption
schemes and secure transmission protocols is a very active area of research. One-time pad is one
such encryption scheme that is ancient.

Suppose we have a message t, encoded as stream of bits:

t = 010101000000011111100010101

If we have a secret key s of the same length:

s = 111101010001111100101010101

we could encrypt t by computing r = t XOR s, where XOR is the function so that sets the ith bit
of r based on the ith bits of t and s according to the following table:

si ti ri
0 0 0
0 1 1
1 0 1
1 1 0

In other words ri is 1 if and only if at least 1 but not both of ti and si are 1. In the example
above,

t = 010101000000011111100010101

s = 111101010001111100101010101

r = 101000010001100011001000000

The bits r can be used as our encrypted message. The great thing about XOR is that if we know
s and r we can recover t. Below w is r XOR s:

r = 101000010001100011001000000

s = 111101010001111100101010101

w = 010101000000011111100010101

1

Here w = t!

So: if Alice and Bob each know s, Alice can send Bob an encrypted message by computing r =
t XOR s. Bob can then read it by computing t = r XOR s.

How do we know no one else can read it? Because we can create any bit string t′ from r using the
appropriate s′: if I want t′i to be 1 I choose s′i to be 0 or 1 according to the value of r′i and the
table above; if I want t′i to be 0, I can similarly choose s′i to make that happen. So if any decoded
message can be obtained by choosing the right s′, then even trying all 2|s| possible s wouldn’t tell
me which of the 2|s| decoded messages was the right one.

The next question is where do we get a good secret key s from? One answer is that we can choose
it randomly.

2.2 Random Number Generators

We’ve used the function rand.Int() for example to generate random numbers for several of our
assignments. However, inside the computer, there is nothing “random” (which is a good thing). So
where do these random numbers come from?

The answer is that they are not truly random, they just “look” random, meaning that there is
no obvious pattern to them. Go, and all other programming languages, generate a sequence of
random numbers by repeatedly applying a function f (we will see a possible definition of f in a
moment):

R0, R1 = f(R0), R2 = f(R1), . . . , Rn = f(Rn−1)

Here R0 is the seed, and when you call rand.Seed(), you are setting the value of R0. When you
ask for a new random number (using, e.g., rand.Int()), Go takes the current random number Ri

and applies the function f to it to get the next number Ri+1.

What is a good choice of f? This is a very deep question that researchers have worked on for
decades. Even deciding what we mean by “a random sequence of numbers” is a point of contention
(as is the philosophical question about whether any randomness exists in the universe). One thing
we know we want from f is that it produces a complex sequence of numbers Ri using a simple rule
f . (Again, a theme of the class pops up: complex behavior from simple rules.) Several classes of
functions seem to have this property, and we’ll discuss one: linear congruent generators.

Let a,m, c be integers. We define f as:

f(R) = (aR + c) mod m

Here mod is the remainder operator, expressed in Go as %. Not all choices of a,m, c give a good
function f , but it turns out that

a = 24 + 1 (1)

m = 216 (2)

c = 1 (3)

gives a reasonably good (though not the best) sequence of random-looking numbers. (These con-
stants were chosen more for ease of implementation than for getting a good random number gen-
erator — if you were to write an industrial strength random number generator, you should use
different constants.)

2

2.3 What you should do

You will write a program in X-TOY machine language to (1) read in a message from standard
input, (2) generate a random secret key, and (2) output both the encrypted message and the key.
Your program will also be able to decrypt these messages.

2.4 Input

Your program will receive input on standard input. The first number you read will be a nonzero
seed for the random number generator if you are supposed to encrypt and 0 if you are supposed
to decrypt. The next number will be the message length n in words. The next n words will be the
message in 16-bit chunks (either t or r depending on if you are encrypting or decrypting). Finally,
if you are decrypting, the next n words will be the secret key s. In other words, standard input will
be a stream of words of the following format:

0 or R0 ; 0=decrypt; non-zero = encrypt with seed R0

n ; the number of words in the message

t_1 ; the first word of the message

...

t_n ; the last word of the message

s_1 ; the first word of the key if decrypting

...

s_n ; the last word of the key if decrypting

If you are encrypting, you should use the linear congruent random number generator described in
Section 2.2 to generate a random secret key s of length n words. You should then XOR s with the
input message to get r. To standard output, you should then write: the number 0, then n, then
the n encrypted words of the message, and then the n words of the key. Notice that this output
format is exactly what is expected for the decryption stage.

If you are decrypting, you should XOR the s and r that you read in from the input to generate t.
You should then write to standard output: the number n, and then the n words of t. Notice that
this output format is exactly what is expected for the encryption stage, except for the seed.

You can assume that n is ≤ 32.

2.5 Tips on how to start

First, play around with X-TOY to get a feel for how you write programs. Do this early on.

Then, write the random number generator “function” that generates random numbers. Compare
your X-TOY output with the same function written in Go.

Then, write the code to read the rest of the input for encryption, and perform the encryption
using the random bits from your random number generator. Again, if needed compare with the
same function written in Go. You should probably write this using a function “XOR(n, loca-
tion 1, location 2, location 3)” that XORs the n words at locations 1 and 2 and stores them in
location 3.

3

Next, write the decryption code: you can again use your “XOR(n, location 1, location 2, location 3)”
function. Make sure that if you encrypt, then decrypt you get back the original message.

3. Learning outcomes

After completing this homework, you should have

• learned about how a CPU works and what is actually going on inside the computer

• gained an appreciation for what the Go complier is doing

• learned about random number generators

• learned about one-time-pad encryption

4

