
02-201 Homework 8:
Protein Folding & Simulated Annealing

Due: Nov 25, noon

1. Set up

The setup is the same as in previous assignments. To do the assignment and extra credit, you will
need the canvas.go file along with the code.google.com directory in your src directory. If you
have your setup from previous experiments, you should have most of this completed already, and
will only need to create the fold directory (step 3) and copy canvas.go into it.

1. Create a directory called “go” someplace (different than where you have installed Go) [If
you’ve already done this, you don’t have to do it again.]

2. Inside of that directory create a directory called src [If you’ve already done this for a previous
assignment, you don’t have to do it again.]

3. Inside of the src directory, create a directory called fold.

4. Download the template canvas.go from BlackBoard (or copy it from a previous assignment)
and put it into the fold directory. Also copy over the code.google.com directory from a
previous assignment if it isn’t already in your src directory.

5. Set your GOPATH environment variable to the location of your go directory that you made
above. On a Mac:

export GOPATH=/Users/carlk/Desktop/go

where you replace the directory name after the = with the location of the go directory you
just made.

On Windows use

set GOPATH=C:\Users\carlk\Desktop\go

2. Assignment

2.1 Protein folding

Proteins are linear molecules that primarily consist of a chain of amino acids strung together. There
are 20 commonly occurring amino acids in most organisms. An important challenge in biology and
computational biology is to predict the three-dimensional structure of a protein given its sequence
of amino acids. The assumption that is made is that a protein will fold up into its lowest-energy
conformation. So if we assume we have a function energy(S) that takes a structure and evaluates
its energy, we are looking for a structure S that minimizes energy(S). While a lot of progress has
been made on this problem over the years (including by the winners of the 2013 Nobel prizes in
Chemistry), the problem remains hard.

Here are two example protein folds and their amino acid sequences:

1



1dtk XAKYCKLPLRIGPCKRKIPSFYYKWKAKQCLPFDYSGCGGNANRFKTIEECRRTCVG-
5pti RPDFCLEPPYTGPCKARIIRYFYNAKAGLCQTFVYGGCRAKRNNFKSAEDCMRTCGGA

(a) 1dtk (b) 1dtk

2.2 The HP model

In order to make progress on several aspects of the protein folding process, a simplified model —
introduced by Dill1 — has been studied. This model is called the “HP model” because there are
only two types of amino acids: “H”, which are hydrophobic (like to be away from water), and “P”
which are polar and don’t mind being near the water. So, the first simplification of the HP model
is that there are 2 instead of 20 types of amino acids.

The second simplification in our case is that proteins are modeled in 2-dimensions instead of 3, and
they fold on a square lattice. So the following are examples of a HP protein fold, where the circles
represent amino acids and the solid nodes are the “H” amino acids:

(Here the leftmost HP protein has the sequence HHPHPHHPHHPPHHH.) We can think of these
folds as (non-random) walks along a square lattice.

We represent such a walk by a sequence of relative directives: right (r), left (l), forward (f). The
walk is described as though you were giving driving directions. For example, a walk that looks
like a “z” would be represented as 〈r, r, l〉 (we assume that initially, the “walker” is facing up).
Almost all walks can be described in this way since at any point in the walk there are three choices
for the next point — you cannot go backwards. The only exception to this is the first point: in
the above scheme you cannot represent the walk that looks like a “u” because there is no way to

1Dill. Theory for the folding and stability of globular proteins. Biochemistry 24(6):1501–9, 1985

2



specify “go backwards” at the first point. Fortunately, this does not matter since we don’t care
about the orientation of the protein. For example, the leftmost structure in the row of 4 above, is
specified by 〈l, l, r, f, r, f, f, r, f, f, r, r, f, l〉. This sequence of instructions is called the fold or the
structure.

The last simplification is the energy function. When dealing with real proteins, the energy function
usually is a combination of many physical energies. For the HP model the energy function measures
how buried the “H” atoms are. Let the amino acid sequence be given by 〈p1, p2, . . . , pn〉, where
pi = 1 if the ith amino acid is an “H” and pi = 0 otherwise. Then the energy of a fold is:

energy(S, ~p) = 10x−
n∑

i=1

pisi (1)

where si equals the number of amino acids at neighboring lattice points, including diagonals, that
are not adjacent to the ith point in the walk, and x is the number of times the walk crosses itself.
In this example,

si = 4 because of the 8 nearby points, 4 contain amino acids and are not adjacent to i in the
structure.

Our goal in this assignment will be to write a program that is given an HP protein sequence ~p
and finds a structure S (walk along a square lattice) that minimizes energy(S, ~p). Alternatively, we
want to find a non-crossing structure S that minimizes energy(S, ~p).

2.3 Simulated annealing

To find a low energy structure, we will use simulated annealing, which is a widely useful optimization
framework. It depends on several parameters: T, k,m, and it works as follows:

1. Set i = 1; Choose a random structure Si (i.e. a random sequence of l, r, f).

2. Compute ei = energy(Si, ~p).

3. Change a random letter of the walk Si to a random different letter to obtain a slightly different
structure S′

i.

4. Compute e′i = energy(S′
i, ~p).

5. If e′i < ei, set Si+1 = S′
i; otherwise, if e′i > ei let q = exp(−(e′i− ei)/kT ) and with probability

q set Si+1 = S′
i, and with probability (1− q) set Si+1 = Si.

6. Let i = i + 1 and if i%100 = 0 let T = 0.999T .

7. If the structure hasn’t changed for m iterations, stop; otherwise go to step 2.

3



8. Return the Sj with the lowest energy.

In other words, we keep making random small changes to the structure. If the change improves the
structure (lower energy), we keep the change. If the change doesn’t improve the energy, we keep the
change with probability exp(−∆)/kT ) where ∆ is the amount by which the energy went up. The
idea here is that we always accept improvements, and we accept “bad” changes with probability
inversely proportional to how bad they are. The constant k is a normalizing factor to scale the
energy differences.

Variable T is the interesting one: when T is large, we are more likely to accept changes that increase
the energy, and when T is very small, we nearly never do. T can be viewed as a temperature of the
system: when the system is “hot”, we bounce around a lot, and when it is “cool” we head towards
low-energy solutions.

Reasonable choices for the parameters for a protein of length n are m = 10n, k = 6n, and the initial
T = 10n. But you may need to modify the exact algorithm / parameters to have your program
find good structures.

2.4 What you should do

You should write a Go program that can be run with the following command line:

./fold HP

where HP is a string of H and Ps representing the HP protein sequence.

Your program should output two lines of text:

Energy: ENERGY

Structure: lrf

where ENERGY is the energy (integer) of the final structure, and lrf is a sequence of l, r, f that
specifies the lowest energy structure you found.

Extra credit: You should also write a file called fold.png that draws the structure. You can
use any nice format for the drawing that makes the Hs dark colored and the Ps light colored. For
example using edges of length 10 pixels, and drawing the H-residues as solid black squares and
P-residues as solid white squares with a black boarder.

You can use any algorithm you want to find a low-energy structure. Of course, simulated annealing
is a good choice, but you can modify simulated annealing if you need to in order to obtain a better
structure. You can also modify aspects of the basic simulated annealing algorithm above. For
example, you can change how often T is changed (maybe even sometimes increasing it), or you
could run several independent simulated annealing runs from different starting points, and return
the best solution found, etc.

2.5 Tips on how to start

First write the main function to parse the arguments from the command line.

Then write a function randomFold that generates a random fold as a sequence of l, r, and f
commands.

4



Then, write a function drawFold that “draws” the fold onto a sufficiently large 2D matrix.

Next, write and test a function energy(S, p) that computes the energy (according to equation 1)
of a fold S and sequence p. This function probably calls drawFold.

Next, write a randomFoldChange function that takes a fold and randomly changes one of its com-
mands.

Next, write optimizeFold(p) that returns the lowest-energy fold you can find for p (likely by
running the simulated annealing algorithm). Play around with the parameters and the algorithm
to see if you can get better and better folds.

Finally, if you want to do the extra credit, write paintFold that draws the fold onto a canvas and
saves the canvas to fold.png.

2.5.1 Tip for getting your program to run faster:

In the simulated annealing code, if you find a new structure with the same energy, don’t switch to
it.

2.5.2 Tips for making the code easier to write:

3. For the drawing (extra credit): you can use any format you want for the drawing so long as it
shows the structure in a reasonable way.

4. The data structure the solution uses for laying out the fold is [][]string. Then M[x][y] lists
all the residues that are in that position (if crossings are allowed). You can use

strings.Contains(M[x][y], "H")

to check if a cell position contains an H amino acid.

5. If you’d prefer, you can simply reject structures that have crossings (i.e. they have infinite
energy)

6. Don’t try to track which amino acids are adjacent to one another. Rather, lay them out in a 2D
array, compute the score ignoring which residues are adjacent in the walk, and then subtract 2 for
every H in the middle of the sequence, and 1 for every H at the ends of the sequence.

3. Learning outcomes

After completing this homework, you should have

• learned about and implemented a simulated annealing optimizer (or other approach for opti-
mizing)

• learned about the HP protein folding model

• gained additional practice writing Go programs

5


