02-201 Homework 1
Fall 2015
DUE: Wednesday, September 16 in class.

Reading: Read chapters 3 and 4 of the “Introduction to Go Programming” textbook, which is online here: http://www.golang-book.com/books/intro

1. Chess encoding. Propose a reasonable way to encode the positions of the pieces of a chess board digitally. For example, describe a way to encode a position like this:

A chessboard has a kings, some number of pawns, queens, bishop, rooks, knights for each player (black and white). Note that there may be more than 1 queen or 2 bishops, etc. if the player has promoted a pawn. Your encoding should handle this case. You don’t have to describe this at the level of bits, but rather how we could represent this in a computer that can only deal with numbers.

2. Jumping CPU. Assume your CPU can execute statements of the form:

\[Ri \leftarrow C \]

where \(Ri \) is a register and \(C \) is an integer; this sets register \(Ri \) to \(C \). Assume you have registers \(R1 \) through \(R6 \). Your computer can also execute statements of the form:

\[Ri \leftarrow Rj \text{ op } Rk \]

where \(Ri \), \(Rj \) and \(Rk \) are registers, and \(\text{op} \) is one of +, −, ×. (So far these statements are the same kind as we described in lecture.)

Your CPU also has another instruction:

Jump to line \(N \) if register \(Ri \) equals 0

When this instruction is encountered, if \(Ri \) equals 0, the CPU “jumps” to line numbered \(N \) and starts executing from there. If \(Ri \) doesn’t equal 0, then the instruction does nothing (and the CPU moves onto the next statement).

For example:
1. $R1 \leftarrow 1$
2. $R2 \leftarrow 10$
3. $R3 \leftarrow 0$
4. $R3 \leftarrow R3 + R2$
5. $R2 \leftarrow R2 - R1$
6. Jump to line 4 if $R2$ equals 0

This program will compute the sum of the integers 1, \ldots, 10 and put it into $R3$.

(a) Modify the above program to compute the sum of the integers 1, \ldots, 100.

(b) Modify the above program to compute the sum of the even integers in 1, \ldots, 100.

(c) Modify the above program to compute the sum of the integers 5, 6, 7, 8, \ldots, 10. Hint: you can do this by adding a line and modifying one line in the above program. (You might need to use a new register.)

(d) Recall that the first two Fibonacci numbers are $f_1 = 1$ and $f_2 = 1$ and $f_i = f_{i-2} + f_{i-1}$. Write a program using the instructions above to compute the 100th Fibonacci number.

3. Using pseudocode in the style of lectures, Write a program $\text{ReverseInteger}(n)$ that takes a positive integer n, and returns the integer formed by reversing the decimal digits of n. For example:
 - 1234 \rightarrow 4321
 - 20000 \rightarrow 2
 - 1331 \rightarrow 1331

 You can use the operation:

 $x \mod y$

 which returns the remainder after x is divided by y.