
Hidden Markov Models
Slides by Carl Kingsford

Based on Chapter 11 of Jones & Pevzner, An Introduction to
Bioinformatics Algorithms

Eukaryotic Genes & Exon Splicing

ATG TAG

ATG TAGintron intron intronexonexon exon exon

Prokaryotic (bacterial) genes look like this:

Eukaryotic genes usually look like this:

AUG UAG

Exons are concatenated together

Introns are
thrown away

This spliced RNA is what is
translated into a protein.

mRNA:

Checking a Casino

Heads/Tails: ↑ ↑ ↓ ↓ ↓ ↓ ↑ ↑ ↑ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑

Fair coin:  
Pr(Heads) = 0.5

Biased coin:  
Pr(Heads) = 0.75

? Suppose either a fair or biased
coin was used to generate a
sequence of heads & tails. But
we don’t know which type of
coin was actual used.

Checking a Casino

Heads/Tails: ↑ ↑ ↓ ↓ ↓ ↓ ↑ ↑ ↑ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑

Fair coin:  
Pr(Heads) = 0.5

Biased coin:  
Pr(Heads) = 0.75

? Suppose either a fair or biased
coin was used to generate a
sequence of heads & tails. But
we don’t know which type of
coin was actual used.

Checking a Casino

Heads/Tails: ↑ ↑ ↓ ↓ ↓ ↓ ↑ ↑ ↑ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑

Fair coin:  
Pr(Heads) = 0.5

Biased coin:  
Pr(Heads) = 0.75

? Suppose either a fair or biased
coin was used to generate a
sequence of heads & tails. But
we don’t know which type of
coin was actual used.

How could we guess which coin was more likely?

Compute the Probability of the
Observed Sequence

Pr(x | Fair) =

Pr(x | Biased) =

X = ↑ ↑ ↓ ↓ ↓ ↓ ↑

Fair coin: Pr(Heads) = 0.5	

Biased coin: Pr(Heads) = 0.75

0.5 0.5 0.5 0.5 0.5 0.5 0.5

0.75 0.75 0.25 0.25 0.25 0.25 0.75

Compute the Probability of the
Observed Sequence

Pr(x | Fair) =

Pr(x | Biased) =

X = ↑ ↑ ↓ ↓ ↓ ↓ ↑

Fair coin: Pr(Heads) = 0.5	

Biased coin: Pr(Heads) = 0.75

0.5 0.5 0.5 0.5 0.5 0.5 0.5

0.75 0.75 0.25 0.25 0.25 0.25 0.75

= 0.57 = 0.0078125

= 0.001647949

× × × × × ×

× × × × × ×

Compute the Probability of the
Observed Sequence

Pr(x | Fair) =

Pr(x | Biased) =

X = ↑ ↑ ↓ ↓ ↓ ↓ ↑

Fair coin: Pr(Heads) = 0.5	

Biased coin: Pr(Heads) = 0.75

0.5 0.5 0.5 0.5 0.5 0.5 0.5

0.75 0.75 0.25 0.25 0.25 0.25 0.75

= 0.57 = 0.0078125

= 0.001647949

× × × × × ×

× × × × × ×

log2 =
Pr(x | Fair)

Pr(x | Biased)
0.0078

0.0016
= 2.245

The log-odds score:
> 0. Hence “Fair” is a
better guess.log2

What if the casino switches coins?

Fair coin: Pr(Heads) = 0.5	

Biased coin: Pr(Heads) = 0.75	

Probability of switching coins = 0.1

Fair coin:  
Pr(Heads) = 0.5

Biased coin:  
Pr(Heads) = 0.75

0.1

0.1

What if the casino switches coins?

Fair coin: Pr(Heads) = 0.5	

Biased coin: Pr(Heads) = 0.75	

Probability of switching coins = 0.1

How can we compute the probability of the entire sequence?

Fair coin:  
Pr(Heads) = 0.5

Biased coin:  
Pr(Heads) = 0.75

0.1

0.1

What if the casino switches coins?

Fair coin: Pr(Heads) = 0.5	

Biased coin: Pr(Heads) = 0.75	

Probability of switching coins = 0.1

How could we guess which coin was more likely at each position?

How can we compute the probability of the entire sequence?

Fair coin:  
Pr(Heads) = 0.5

Biased coin:  
Pr(Heads) = 0.75

0.1

0.1

What does this have to do with
biology?

atg gat ggg agc aga tca gat cag atc agg gac gat aga cga tag tga

What does this have to do with
biology?

atg gat ggg agc aga tca gat cag atc agg gac gat aga cga tag tga

Before: 	

How likely is it that this sequence was generated by a fair coin?	

Which parts were generated by a biased coin?

What does this have to do with
biology?

atg gat ggg agc aga tca gat cag atc agg gac gat aga cga tag tga

Now:	

How likely is it that this is a gene?	

Which parts are the start, middle and end?

Before: 	

How likely is it that this sequence was generated by a fair coin?	

Which parts were generated by a biased coin?

What does this have to do with
biology?

atg gat ggg agc aga tca gat cag atc agg gac gat aga cga tag tga

Now:	

How likely is it that this is a gene?	

Which parts are the start, middle and end?

Start	

Generator

Middle of 	

Gene Generator

End	

Generator

Before: 	

How likely is it that this sequence was generated by a fair coin?	

Which parts were generated by a biased coin?

Hidden Markov Model (HMM)
Fair coin: Pr(Heads) = 0.5	

Biased coin: Pr(Heads) = 0.75	

Probability of switching coins = 0.1

Fair Biased

0.1

0.1

0.750.5 0.250.5

H T

Fair Biased

H T

0.9
0.9

Formal Definition of a HMM
∑ = alphabet of symbols.	

Q = set of states.	

A = an |Q| x |Q| matrix where entry (k,l) is the probability of moving from
state k to state l.	

E = a |Q| x |∑| matrix, where entry (k,b) is the probability of emitting b when
in state k.

1 2 3 4 5 6 7

1

2

3

4

5

6

7

Probability of
going from state
5 to state 7

A =

A C G T

1

2

3

4

5

6

7

Probability of
emitting T when
in state 4.E =

Constraints on A and E

1 2 3 4 5 6 7

1

2

3

4

5

6

7

Probability of
going from state
5 to state 7

A C G T

1

2

3

4

5

6

7

Probability of
emitting T when
in state 4.

A = E =

Sum of the # in each row must be 1.

Computing Probabilities Given Path

Fair Biased

0.1

0.1

0.750.5 0.250.5

H T

Fair Biased

H T

0.9
0.9

↑↓ ↓ ↑ ↑ ↑ ↓ ↑ ↑ ↓x =

π = F F F B B B F F FB

Pr(xi | πi) = 0.5 0.5 0.5 0.75 0.75 0.75 0.25 0.5 0.5 0.5

Pr(πi → πi+1) = 0.9 0.9 0.1 0.9 0.9 0.9 0.1 0.1 0.10.1

The Decoding Problem
Given x and π, we can compute:	

• Pr(x | π): product of Pr(xi | πi)	

• Pr(π): product of Pr(πi → πi+1) 	

• Pr(x, π): product of all the Pr(xi | πi) and Pr(πi → πi+1)

But they are “hidden” Markov models because π is unknown.

Pr(x,⇡) = Pr(⇡0 ! ⇡1)
nY

i=1

Pr(xi | ⇡i) Pr(⇡i ! ⇡i+1)

Decoding Problem: Given a sequence x1x2x3...xn generated by an
HMM (∑, Q, A, E), find a path π that maximizes Pr(x, π).

The Viterbi Algorithm to Find Best
Path

A[a, k] := the probability of the best path for x1...xk that ends at state a.

1 2 3 4 5 6 7

1

2

8 9 10

↓ ↑ ↓ ↑ ↑ ↑ ↓ ↑ ↑ ↓

Q

A[a, k] = the path for x1...xk-1 that goes to some state b times cost of a
transition from b to i, and then to output xk from state a.

1 2 3 4 5 6 7

Fair

Biased

8 9 10

↓ ↑ ↓ ↑ ↑ ↑ ↓ ↑ ↑ ↓

Q
b

= k

a

Viterbi DP Recurrence

A[a, k] = max

b2Q
{A[b, k � 1]⇥ Pr(b! a)⇥ Pr(xk | ⇡k = a)}

A[a, 1] = Pr(⇡1 = a)⇥ Pr(x1 | ⇡1 = a)

Over all possible
previous states.

Best path for
x1..xk ending

in state b

Probability of
transitioning

from state b to
state a

Probability of
outputting xk
given that the
kth state is a.

1 2 3 4 5 6 7

Fair

Biased

8 9 10

↓ ↑ ↓ ↑ ↑ ↑ ↓ ↑ ↑ ↓

Q
b

= k

a

Base case:

Probability
that the first

state is a

Probability of
emitting x1

given the first
state is a.

Which Cells Do We Depend On?

1 2 3 4 5 6 7

1

2

3

4

5

6

7

8 9 10

↓ ↑ ↓ ↑ ↑ ↑ ↓ ↑ ↑ ↓

Q

x=

Order to Fill in the Matrix:

1 2 3 4 5 6 7

1

2

3

4

5

6

7

8 9 10

↓ ↑ ↓ ↑ ↑ ↑ ↓ ↑ ↑ ↓

Q

x=

Where’s the answer?

1 2 3 4 5 6 7

1

2

3

4

5

6

7

8 9 10

↓ ↑ ↓ ↑ ↑ ↑ ↓ ↑ ↑ ↓

Q

x=

max value in
these red cells

Graph View of Viterbi

x1 x2 x3 x4
x5 x6

Q

Running Time

• # of subproblems = O(n|Q|), where n is the length of the sequence.	

• Time to solve a subproblem = O(|Q|)	

• Total running time: O(n|Q|2)

Using Logs

Typically, we take the log of the probabilities to avoid multiplying a lot
of terms:

log(A[a, k]) = max

b2Q
{log(A[b, k � 1]⇥ Pr(b! a)⇥ Pr(xk | ⇡k = a))}

= max

b2Q
{log(A[b, k � 1]) + log(Pr(b! a)) + log(Pr(xk | ⇡k = a))}

Why do we want to avoid multiplying lots of terms?

log(ab) = log(a) + log(b)Remember:

Using Logs

Typically, we take the log of the probabilities to avoid multiplying a lot
of terms:

log(A[a, k]) = max

b2Q
{log(A[b, k � 1]⇥ Pr(b! a)⇥ Pr(xk | ⇡k = a))}

= max

b2Q
{log(A[b, k � 1]) + log(Pr(b! a)) + log(Pr(xk | ⇡k = a))}

Why do we want to avoid multiplying lots of terms?

log(ab) = log(a) + log(b)Remember:

Multiplying leads to very small numbers:	

0.1 x 0.1 x 0.1 x 0.1 x 0.1 = 0.00001	

This can lead to underflow.	

Taking logs and adding keeps numbers bigger.

Estimating HMM Parameters

x

(1)
1 x

(1)
2 x

(1)
3 x

(1)
4 x

(1)
5 . . . x

(1)
n

⇡

(1)
1 ⇡

(1)
2 ⇡

(1)
3 ⇡

(1)
4 ⇡

(1)
5 . . . ⇡

(1)
n

x

(2)
1 x

(2)
2 x

(2)
3 x

(2)
4 x

(2)
5 . . . x

(2)
n

⇡

(2)
1 ⇡

(2)
2 ⇡

(2)
3 ⇡

(2)
4 ⇡

(2)
5 . . . ⇡

(2)
n

(x(1),π(1)) =

(x(2),π(2)) =

Training examples
where outputs and
paths are known.

Pr(a! b) =
AabP

q2Q Aaq
Pr(x | a) =

E

xaP
x2⌃ E

xq

of times transition  
a → b is observed.

of times x was
observed to be
output from state a.  

Pseudocounts

Pr(a! b) =
AabP

q2Q Aaq
Pr(x | a) =

E

xaP
x2⌃ E

xq

of times transition  
a → b is observed.

of times x was
observed to be
output from state a.  

What if a transition or emission is never observed in the training data? 	

⇒ 0 probability	

!
Meaning that if we observe an example with that transition or emission in the real
world, we will give it 0 probability.	

!
But it’s unlikely that our training set will be large enough to observe every possible
transition.	

!
Hence: we take Aab = (#times a → b was observed) + 1	

Similarly for Exa.

“pseudocount”

Viterbi Training

• Problem: typically, in the real would we only have examples of the output
x, and we don’t know the paths π.

1. Choose a random set of parameters.	

2. Repeat:	

1. Find the best paths.	

2. Use those paths to estimate new parameters.

This is an local search algorithm.	

!
It’s also an example of a “Gibbs sampling” style algorithm.	

!
The Baum-Welch algorithm is similar, but doesn’t commit to a single
best path for each example.

Viterbi Training Algorithm:

Some probabilities in which we are
interested

Pr(x) =
X

⇡

Pr(x, ⇡)

Pr(x,⇡i = a) =
X

⇡:⇡i = a

Pr(x,⇡)

What is the probability of observing a string x under the assumed HMM?

What is the probability of observing x using a path where the ith state is a?

What is the probability that the ith state is a?

Pr(⇡i = a|x) =
Pr(x,⇡i = a)

Pr(x)

The Forward Algorithm

A[a, k] = max

b2Q
{A[b, k � 1]⇥ Pr(b! a)⇥ Pr(xk | ⇡k = a)}

How do we compute this:

We can compute the probability of emitting x1,...,xk using some path that
ends in a:

Recall the recurrence to compute best path for x1...xk that ends at state a:

F [a, k] =
X

b2Q

F [b, k � 1]⇥ Pr(b! a)⇥ Pr(xk | ⇡k = a)

= Pr(x1, . . . , xi, ⇡i = a) Pr(xi+1, . . . , xn | ⇡i = a)Pr(x,⇡k = a)

The Forward Algorithm

A[a, k] = max

b2Q
{A[b, k � 1]⇥ Pr(b! a)⇥ Pr(xk | ⇡k = a)}

How do we compute this:

We can compute the probability of emitting x1,...,xk using some path that
ends in a:

Recall the recurrence to compute best path for x1...xk that ends at state a:

F [a, k] =
X

b2Q

F [b, k � 1]⇥ Pr(b! a)⇥ Pr(xk | ⇡k = a)

= Pr(x1, . . . , xi, ⇡i = a) Pr(xi+1, . . . , xn | ⇡i = a)Pr(x,⇡k = a)

The Forward Algorithm

x1 x2 x3 x4

a

x5 x6

Q

F[a,4]

Computes the total probability
of all the paths of length k

ending in state a.

The Forward Algorithm

x1 x2 x3 x4

a

x5 x6

Q

F[a,4]

Computes the total probability
of all the paths of length k

ending in state a.

Still need to compute the
probability of paths leaving a

and going to the end.

The Backward Algorithm

B[a, k] =
X

b2Q

B[b, k + 1]⇥ Pr(a! b)⇥ Pr(xk+1 | ⇡k+1 = b)

Prob for  
xk+1..xn

starting in
state b

Probability
going from
state a to b

Probability of emitting
xk+1 given that the next

state is b.

The same idea as the forward algorithm, we just start from the end of the
input string and work towards the beginning:

B[a,k] = “the probability of generating string xk+1,...,xn starting from state b”

The Forward-Backward Algorithm

Pr(⇡i = a | x) =
Pr(x,⇡i = k)

Pr(x)
=

F [a, i] · B[a, i]
Pr(x)

a

F[a,i] B[a,i]

Recap

• Hidden Markov Model (HMM) model the generation of strings.	

• They are governed by a string alphabet (∑), a set of states (Q), a set of
transition probabilities A, and a set of emission probabilities for each
state (E).	

• Given a string and an HMM, we can compute:	

The most probable path the HMM took to generate the string (Viterbi).	

The probability that the HMM was in a particular state at a given step (forward-
backward algorithm).	

• Algorithms are based on dynamic programming.	

• Finding good parameters is a much harder problem.  
The Baum-Welch algorithm is an oft-used heuristic algorithm.

