
Wavelet Trees
02-714

Slides by Carl Kingsford

Following: Navarro,
Wavelet Trees for All, CPM 2012, pp. 2-26

Operations on strings

• rankc(S,i) := the number of char c at or before position i in S.

• selectc(S,j) := the position of the jth occurrence of c in S.

• S[i] = “access character i”

Note: rankc(S, selectc(S, j)) = j, so rank and select are inverses of
each other.

Goal: rank, select, access in quickly while using small space.

Operations on bit vectors

• rank1(S,i) := the number of 1 bits at or before position i in S.

• select1(S,j) := the position of the jth 1 bit in S.

• rank0(S,i) and select0(S,j) are defined analogously.

S[i] = “access bit i” = rank1(S, i) – rank1(S, i – 1)

Our operations will depend on similar operations on bit vectors:

We will see later how to implement these operations to run in
O(1) time for binary vectors.

Wavelet Tree

S = A C G G G A C C G T T T T T A G G A
0 0 1 1 1 0 0 0 1 1 1 1 1 1 0 1 1 0

A C A C C A A
0 1 0 1 1 0 0 0 0 0 0 1 1 1 1 1 0 0

G G G G T T T T T G G

G G G G G G T T T T TA A A A C C C

AC GT

A C G T

0: letter ∈ first half of alphabet
1: letter ∈ first half of alphabet

Wavelet Tree, Example 2

1 2 1 3 3 4 5 3 3 3 2 2 1 7 3 2 7 6
0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 1

1 2 1 3 3 4 3 3 3 2 2 1 3 2
0 0 0 1 1 1 1 1 1 0 0 0 1 0 0 1 1 0

5 7 7 6

5 6 7 71 2 1 2 2 1 2 3 3 4 3 3 3 3
0 10 1 0 1 1 0 1 0 0 1 0 0 0 0

1 1 1 2 2 2 2 3 3 3 3 3 3 4 5 6

S[i]

i

1 2 1 3 3 4 5 3 3 3 2 2 1 7 3 2 7 6
0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 1

1 2 1 3 3 4 3 3 3 2 2 1 3 2
0 0 0 1 1 1 1 1 1 0 0 0 1 0 0 1 1 0

5 7 7 6

5 6 7 71 2 1 2 2 1 2 3 3 4 3 3 3 3
0 10 1 0 1 1 0 1 0 0 1 0 0 0 0

1 1 1 2 2 2 2 3 3 3 3 3 3 4 5 6

root

v

w

Go left if bit is 0, go right if bit is 1.

Use rank01() to map a bit at a node to
the right place in the children.

S[i]

i

1 2 1 3 3 4 5 3 3 3 2 2 1 7 3 2 7 6
0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 1

1 2 1 3 3 4 3 3 3 2 2 1 3 2
0 0 0 1 1 1 1 1 1 0 0 0 1 0 0 1 1 0

5 7 7 6

5 6 7 71 2 1 2 2 1 2 3 3 4 3 3 3 3
0 10 1 0 1 1 0 1 0 0 1 0 0 0 0

1 1 1 2 2 2 2 3 3 3 3 3 3 4 5 6

iv = rank0(root, i)

root

v

w

Go left if bit is 0, go right if bit is 1.

Use rank01() to map a bit at a node to
the right place in the children.

S[i]

i

1 2 1 3 3 4 5 3 3 3 2 2 1 7 3 2 7 6
0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 1

1 2 1 3 3 4 3 3 3 2 2 1 3 2
0 0 0 1 1 1 1 1 1 0 0 0 1 0 0 1 1 0

5 7 7 6

5 6 7 71 2 1 2 2 1 2 3 3 4 3 3 3 3
0 10 1 0 1 1 0 1 0 0 1 0 0 0 0

1 1 1 2 2 2 2 3 3 3 3 3 3 4 5 6

iv = rank0(root, i)

root

v

w

iw = rank1(v, iv)

Go left if bit is 0, go right if bit is 1.

Use rank01() to map a bit at a node to
the right place in the children.

S[i]

i

1 2 1 3 3 4 5 3 3 3 2 2 1 7 3 2 7 6
0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 1

1 2 1 3 3 4 3 3 3 2 2 1 3 2
0 0 0 1 1 1 1 1 1 0 0 0 1 0 0 1 1 0

5 7 7 6

5 6 7 71 2 1 2 2 1 2 3 3 4 3 3 3 3
0 10 1 0 1 1 0 1 0 0 1 0 0 0 0

1 1 1 2 2 2 2 3 3 3 3 3 3 4 5 6

iv = rank0(root, i)

root

v

w

iw = rank1(v, iv)

i3 = rank0(w, iw) = 5

Go left if bit is 0, go right if bit is 1.

Use rank01() to map a bit at a node to
the right place in the children.

rankc(S,i)

i

1 2 1 3 3 4 5 3 3 3 2 2 1 7 3 2 7 6
0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 1

1 2 1 3 3 4 3 3 3 2 2 1 3 2
0 0 0 1 1 1 1 1 1 0 0 0 1 0 0 1 1 0

5 7 7 6

5 6 7 71 2 1 2 2 1 2 3 3 4 3 3 3 3
0 10 1 0 1 1 0 1 0 0 1 0 0 0 0

1 1 1 2 2 2 2 3 3 3 3 3 3 4 5 6

root

v

w

Use rank01() to map a bit at a node to the right
place in the children.

rank5(S,i)

Go left if c is in first half of alphabet, go right if c is in second half of alphabet.

rankc(S,i)

i

1 2 1 3 3 4 5 3 3 3 2 2 1 7 3 2 7 6
0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 1

1 2 1 3 3 4 3 3 3 2 2 1 3 2
0 0 0 1 1 1 1 1 1 0 0 0 1 0 0 1 1 0

5 7 7 6

5 6 7 71 2 1 2 2 1 2 3 3 4 3 3 3 3
0 10 1 0 1 1 0 1 0 0 1 0 0 0 0

1 1 1 2 2 2 2 3 3 3 3 3 3 4 5 6

iv = rank1(root, i)

root

v

w

Use rank01() to map a bit at a node to the right
place in the children.

rank5(S,i)

Go left if c is in first half of alphabet, go right if c is in second half of alphabet.

rankc(S,i)

i

1 2 1 3 3 4 5 3 3 3 2 2 1 7 3 2 7 6
0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 1

1 2 1 3 3 4 3 3 3 2 2 1 3 2
0 0 0 1 1 1 1 1 1 0 0 0 1 0 0 1 1 0

5 7 7 6

5 6 7 71 2 1 2 2 1 2 3 3 4 3 3 3 3
0 10 1 0 1 1 0 1 0 0 1 0 0 0 0

1 1 1 2 2 2 2 3 3 3 3 3 3 4 5 6

iv = rank1(root, i)

root

v

w

iw = rank0(v, iv)

Use rank01() to map a bit at a node to the right
place in the children.

rank5(S,i)

Go left if c is in first half of alphabet, go right if c is in second half of alphabet.

rankc(S,i)

i

1 2 1 3 3 4 5 3 3 3 2 2 1 7 3 2 7 6
0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 1

1 2 1 3 3 4 3 3 3 2 2 1 3 2
0 0 0 1 1 1 1 1 1 0 0 0 1 0 0 1 1 0

5 7 7 6

5 6 7 71 2 1 2 2 1 2 3 3 4 3 3 3 3
0 10 1 0 1 1 0 1 0 0 1 0 0 0 0

1 1 1 2 2 2 2 3 3 3 3 3 3 4 5 6

iv = rank1(root, i)

root

v

w

iw = rank0(v, iv)

i3 = rank0(w, iw) = 1

Use rank01() to map a bit at a node to the right
place in the children.

rank5(S,i)

Go left if c is in first half of alphabet, go right if c is in second half of alphabet.

selectc(S,j)

j=4

1 2 1 3 3 4 5 3 3 3 2 2 1 7 3 2 7 6
0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 1

1 2 1 3 3 4 3 3 3 2 2 1 3 2
0 0 0 1 1 1 1 1 1 0 0 0 1 0 0 1 1 0

5 7 7 6

5 6 7 71 2 1 2 2 1 2 3 3 4 3 3 3 3
0 10 1 0 1 1 0 1 0 0 1 0 0 0 0

1 1 1 2 2 2 2 3 3 3 3 3 3 4 5 6

root

v

w

select3(S,4)

Start at position j in leaf corresponding to c.

Repeat: new i = selectb(p, i) where p = parent of current node, b = 0 if current
node is left child of p, 1 if right child

selectc(S,j)

j=4

1 2 1 3 3 4 5 3 3 3 2 2 1 7 3 2 7 6
0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 1

1 2 1 3 3 4 3 3 3 2 2 1 3 2
0 0 0 1 1 1 1 1 1 0 0 0 1 0 0 1 1 0

5 7 7 6

5 6 7 71 2 1 2 2 1 2 3 3 4 3 3 3 3
0 10 1 0 1 1 0 1 0 0 1 0 0 0 0

1 1 1 2 2 2 2 3 3 3 3 3 3 4 5 6

root

v

w

iw = select0(w, 4)

select3(S,4)

Start at position j in leaf corresponding to c.

Repeat: new i = selectb(p, i) where p = parent of current node, b = 0 if current
node is left child of p, 1 if right child

selectc(S,j)

j=4

1 2 1 3 3 4 5 3 3 3 2 2 1 7 3 2 7 6
0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 1

1 2 1 3 3 4 3 3 3 2 2 1 3 2
0 0 0 1 1 1 1 1 1 0 0 0 1 0 0 1 1 0

5 7 7 6

5 6 7 71 2 1 2 2 1 2 3 3 4 3 3 3 3
0 10 1 0 1 1 0 1 0 0 1 0 0 0 0

1 1 1 2 2 2 2 3 3 3 3 3 3 4 5 6

root

v

w

iw = select0(w, 4)

select3(S,4)

Start at position j in leaf corresponding to c.

Repeat: new i = selectb(p, i) where p = parent of current node, b = 0 if current
node is left child of p, 1 if right child

iv = select1(w, iw)

selectc(S,j)

j=4

1 2 1 3 3 4 5 3 3 3 2 2 1 7 3 2 7 6
0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 1

1 2 1 3 3 4 3 3 3 2 2 1 3 2
0 0 0 1 1 1 1 1 1 0 0 0 1 0 0 1 1 0

5 7 7 6

5 6 7 71 2 1 2 2 1 2 3 3 4 3 3 3 3
0 10 1 0 1 1 0 1 0 0 1 0 0 0 0

1 1 1 2 2 2 2 3 3 3 3 3 3 4 5 6

root

v

w

iw = select0(w, 4)

iroot = select0(root, iv)

select3(S,4)

Start at position j in leaf corresponding to c.

Repeat: new i = selectb(p, i) where p = parent of current node, b = 0 if current
node is left child of p, 1 if right child

iv = select1(w, iw)

Running Times

Therefore, rank, select, access take O(log |∑|) to run.

If alphabet size is constant, this is O(1).

Tree height = log |∑|, where ∑ is the alphabet.

rank, select, access follow a root-leaf path in the tree, taking
O(1) time at each node.

Tree Shape

• Don’t have to use balanced tree shape

• Can instead encode using, say, Huffman code tree shape

- makes accesses to frequent characters faster

- gives good space usage even without compressed bit
vectors.

• Doesn’t have to be binary tree

- by selecting optimal branching factor, can get query time
to O(log n / log log n).

Application: Inverted Indices

Traditional inverted
index represents the
document as an array
of lists:

1 !If you really want to hear about it, the first thing you'll
13!probably want to know is where I was born, and what my lousy
26!childhood was like, and how my parents were occupied and all
37!before they had me, and all that David Copperfield kind of crap,
49!but I don't feel like going into it, if you want to know the
63!truth.

If

you

really

want

and

know

truth

1, 57

2, 58

3

4,14,59

22,29,35,41

16,61

63

⋮

Good for searching for
word w

Hard to compute S[i]

Application: Inverted Indices, 2

• Represent text as a string of word ids.

• Store as a wavelet tree.

• S[i] now O(log |∑|) = O(log n)

• selectw(S, j) now gives the position of the jth occurrence of
word w in time O(log n).

Application: Document Retrieval

• In which documents does word w appear?

Given a collection of documents D1, ..., Dm, answer the following types of
queries quickly:

Represent documents as strings of word ids.

Concatenate the documents together, separated by a $ word that does not
occur elsewhere.

$ $ $ $
x x x x

i = 1
repeat:
! pi = selectc(i)! ! ! # ith occurrence
! di = rank$(pi) + 1! ! # document containing it
! print di
! p’ = select$(di)!! ! # end of document
! i = rankc(p’) + 1! ! # find 1st occurrence after end of doc

Application: Graphs

• successor(u, i) := the ith vertex v such that edge (v,u) exists.

• predecessor(u, i) := the jth vertex v such that edge (u,v) exists.

Given a directed graph G, answer the following queries quickly:

Represent G as a concatenation of adjacencies lists, and store in wavelet tree:

2 3 5 4 3 5 6 2 6 5 4 1 2
1 0 0 1 0 0 1 1 0 0 1 1 0

bit vector
marking list
boundaries

• successor(u, i): p = select1(B,u); return S[p+i-1]

• predecessor(u, i): p = selectu(S, i); return rank1(B, p)

|∑| = n, so
these take
O(log n) time.

Application: Grid of Points

Suppose you have points (x1, y1), ..., (xn,yn) on an m × m grid and
you want to answer range queries quickly:

• Which points fall inside rectangle [xmin,xmax] by [ymin, ymax]?

Sort points by x-coordinate, consider yπ(1), yπ(4), yπ(3), ..., yπ(n) as a
string and store in a wavelet tree.

xleft xright

x’left = rank0(Broot, xleft)

x’right = rank0(Broot, xright)
x’right = rank1(Broot, xright)

x’left = rank1(Broot, xleft)

Map range to left and right, stop
when characters in interval are
contained in [ymin, ymax].

Summary

• Wavelet trees compactly store strings.

• Allowing access almost as fast as for a plain array.

• And allowing for fast rank and select queries too.

• Lots of applications and extensions, often storing things not
normally thought of as strings.

