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Exact Set Matching Problem

• Easy to solve in ∑i(|Pi| + |T|) = O(n + zm)  
where n = ∑i|Pi| and m = |T|.

• Can be solved in time O(n + m + k) in several different ways. E.g.:

Aho-Corasick: based on keyword trees

Using suffix trees directly

• Can be solved quickly in practice using Wu-Mandber (a hash-
based method).

Problem. Given a set of patterns P = {P1,...,Pz}, and a text T, find all 
exact occurrences of every Pi in T.



Aho-Corasick
A prefix approach

(following Gusfield)



Keyword Tree

Def. A keyword tree K(P) of a set of patterns P is a 
tree where: 

1. each edge is labeled with a letter 
2. edges leading from u to its children all have 

different labels
3. there is a function n(i) that gives the node such 

that pattern i is spelled out on the unique path 
from root to n(i).

P = {abandon, abduct, abacus}
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Aho-Corasick Failure Function
Notation.

L(v)  := the string spelled out by the path from the root to node v.
lp(v)  := the longest proper suffix of L(v) that is also a prefix of some 

pattern in P. 
f(v)  := the node representing string lp(v) in K(P). 

K(P):

v

L(v)
Thm. f(v) always exists and is unique for any 
node v in K(P).

Proof: lp(v) is a prefix of a pattern, and every 
pattern is represented by a unique path in K(P) 
on which every prefix is spelled out. 
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Example K(P) with Failure Functions
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P = {ACGAC, GACGT, GAACG, CCCC}



Aho-Corasick Search

T

K(P):
i

Walk down string and tree at same time, matching characters:

equal

v

If you get to a node that represents a full pattern, report an occurrence.

If you get stuck at node v, jump to node f(v)
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Running Time
Nearly identical analysis to KMP:

Index i into T is never decremented. Every character can be 
matched at most once.

Every mismatch results in a “shift” of the pattern of size at ≤ the 
number of current matched characters: can have at most O(|T|) total 
mismatches. 

build the keyword tree

⇒ O(total length of patterns + |T| + # of positions output)

output the positions

search T



Computing f(u)
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Do a BFS of K(P).

Assume we’ve computed f(v) for all u at fewer than 
k hops from the root.

We want to compute f(u) for u at k+1 hops from the 
root.

Let v be the parent of u and x be the 
character on the (v,u) edge.

We know f(v).

Traverse the chain of f(v), f(f(v)), f(f(f(v)), etc. 
until you find a node with a child edge 
labeled x.

Set f(u) equal to that node.

Idea: f(v) is the longest suffix of L(v) that matches a prefix of a pattern, f(f(v)) is the longest 
suffix of L(f(v)) that matches a prefix, and so on.

We want the longest (first encountered) one of those suffixes that can be extended with x.
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Running time of computing the f(u)

lp(vi)

Consider path v1,...,vk from root to u.

lp increases by at most 1 when we go from vi to vi+1

lp decreases by at least 1 when we follow an f(v) link.

u

lp is never negative.

root u

va
lu

e 
of
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So we can “charge” the cost of following the 
link to the cost of just walking down the path.

Therefore running time = 
O(total size of keyword tree) = 
O(size of pattern set)



One Bug: If Pi is a substring of Pj

T
Pi

Pj

suffix of L(v) = Pi

v

If you follow chain of failure links from v, you 
eventually find a node that represents Pi.

v represents a full pattern := v is labeled as a full pattern, or there is some 
node labeled as a full pattern reachable following failure links from v.
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Wu-Mandber
A suffix approach



Wu-Mandber: Check

Pi

Length = b

PotentialP:

h(         )

List of patterns whose last 
block hashes here.

T

i
At i, explicitly check each 
pattern in h(T[i-b+1,...,i]) to 
see if it ends at position i.



Wu-Mandber: Shift

GoodShift:

Pi

GoodShift[z] contains the amount that it is safe to shift by if 
we know T ending at i hashes to z with hash function g.

z

= min { |Pi| - j : g(Bij) = z }

Bij := block of length b ending at position j in 
pattern Pi.

B1j
j

T

i

g(          ) = z

Shift i by GoodShift[g(T[i-b+1,...,i])]

If Shift = 0: perform the Check on previous slide, and shift by 1.
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Oracle Machine-based Approaches
(following Navarro & Raffinot)



Oracle-based Approach for 1 String
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Factor Oracle: An FSA where every substring of P is spelled out by 
some path to the root.

Factor oracle search:

Build a factor oracle F on reverse(P) 

At position i in T: walk backwards, simultaneously walking in F

i

(A) If we get stuck in F at position j, shift P to start just after j.

Works because: y         must not be a substring of P.

(B) If we match |P| characters, we report a match and shift by 1.

j

y
(A)(B)



Using Multi-string Matching For 
Filtering

(following Navarro & Raffinot)



Filtering for Approximate Matches

Idea: throw out parts of T to speed up approximate matching.

Let k be the maximum number of mismatches we will allow.

Thm. Let P = p1...pj (where pi are substrings), and
let a1...aj be non-negative integers with ∑i ai = A.
If Q and P match with ≤ k errors, then for some 1 ≤ i ≤ j, Q contains 
a substring that matches pi with ≤ ⌊aik / A⌋ errors.

Proof. If every sub-pattern pi matched with ≥ 1+ ⌊aik / A⌋ 
errors, then there would be ≥ ∑i (1 + ⌊aik / A⌋) = k + 1 total 
errors, a contradiction.

pi

ai
P



PEX
If ai = 1 for all i and A = k + 1: 

⟹ some subpattern matches with < ⌊k / (k+1)⌋ errors

⟹ some subpattern matches exactly.

1. Divide P into k+1 equal-size chunks p1...pk+1

2. Use a multipattern search algorithm to find 
occurrences of p1...pk+1

3. Search region around each pi match to see if 
it can be extended to a full P match. 
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P

T

i

i - 1 + k |P | - i - |        | + k


