Searching for Multiple Patterns
 02-714
 Slides by Carl Kingsford

Exact Set Matching Problem

Problem. Given a set of patterns $P=\left\{P_{1}, \ldots, P_{7}\right\}$, and a text T, find all exact occurrences of every P_{i} in T.

- Easy to solve in $\sum_{i}\left(\left|P_{i}\right|+|T|\right)=O(n+z m)$
where $n=\sum_{i}\left|P_{i}\right|$ and $m=|T|$.
- Can be solved in time $O(n+m+k)$ in several different ways. E.g.:

Aho-Corasick: based on keyword trees
Using suffix trees directly

- Can be solved quickly in practice using Wu-Mandber (a hashbased method).

Aho-Corasick
A prefix approach (following Gusfield)

Keyword Tree

Def. A keyword tree $K(P)$ of a set of patterns P is a tree where:

1. each edge is labeled with a letter
2. edges leading from u to its children all have different labels
3. there is a function n (i) that gives the node such that pattern i is spelled out on the unique path from root to $n(i)$.

$$
P=\{a b a n d o n, \text { abduct, abacus }\}
$$

Aho-Corasick Failure Function

Notation.

$L(v):=$ the string spelled out by the path from the root to node v.
$l p(v):=$ the longest proper suffix of $L(v)$ that is also a prefix of some pattern in P.
$f(v) \quad:=$ the node representing string $l p(v)$ in $K(P)$.

Thm. $f(v)$ always exists and is unique for any node v in $K(P)$.

Proof: $\operatorname{lp}(v)$ is a prefix of a pattern, and every pattern is represented by a unique path in $K(P)$ on which every prefix is spelled out.

Aho-Corasick Failure Function

Notation.

$L(v):=$ the string spelled out by the path from the root to node v.
$l p(v)$:= the longest proper suffix of $L(v)$ that is also a prefix of some pattern in P.
$f(v) \quad:=$ the node representing string $l p(v)$ in $K(P)$.

Thm. $f(v)$ always exists and is unique for any node v in $K(P)$.

Proof: $\operatorname{lp}(v)$ is a prefix of a pattern, and every pattern is represented by a unique path in $K(P)$ on which every prefix is spelled out.

Aho-Corasick Failure Function

Notation.

$L(v):=$ the string spelled out by the path from the root to node v.
$l p(v):=$ the longest proper suffix of $L(v)$ that is also a prefix of some pattern in P.
$f(v) \quad:=$ the node representing string $l p(v)$ in $K(P)$.

Thm. $f(v)$ always exists and is unique for any node v in $K(P)$.

Proof: $\operatorname{lp}(v)$ is a prefix of a pattern, and every pattern is represented by a unique path in $K(P)$ on which every prefix is spelled out.

Aho-Corasick Failure Function

Notation.

$L(v):=$ the string spelled out by the path from the root to node v.
$l p(v):=$ the longest proper suffix of $L(v)$ that is also a prefix of some pattern in P.
$f(v) \quad:=$ the node representing string $l p(v)$ in $K(P)$.

Thm. $f(v)$ always exists and is unique for any node v in $K(P)$.

Proof: $\operatorname{lp}(v)$ is a prefix of a pattern, and every pattern is represented by a unique path in $K(P)$ on which every prefix is spelled out.

Example $K(P)$ with Failure Functions

Aho-Corasick Search

Walk down string and tree at same time, matching characters:

If you get to a node that represents a full pattern, report an occurrence.
If you get stuck at node v, jump to node $f(v)$

Aho-Corasick Search

Walk down string and tree at same time, matching characters:

If you get to a node that represents a full pattern, report an occurrence.
If you get stuck at node v, jump to node $f(v)$

Aho-Corasick Search

Walk down string and tree at same time, matching characters:

If you get to a node that represents a full pattern, report an occurrence.
If you get stuck at node v, jump to node $f(v)$

Aho-Corasick Search

Walk down string and tree at same time, matching characters:

If you get to a node that represents a full pattern, report an occurrence.
If you get stuck at node v, jump to node $f(v)$

Running Time

Nearly identical analysis to KMP:

Index i into T is never decremented. Every character can be matched at most once.

Every mismatch results in a "shift" of the pattern of size at \leq the number of current matched characters: can have at most $\mathrm{O}(\mathrm{IT})$ total mismatches.

Computing f(u)

Let v be the parent of u and x be the character on the (v, u) edge.

We know $f(v)$.
Traverse the chain of $f(v), f(f(v))$, $f(f(f(v))$, etc. until you find a node with a child edge labeled x .

Set $f(u)$ equal to that node.

Idea: $f(v)$ is the longest suffix of $L(v)$ that matches a prefix of a pattern, $f(f(v))$ is the longest suffix of $L(f(v))$ that matches a prefix, and so on.

We want the longest (first encountered) one of those suffixes that can be extended with x .

Computing f(u)

Let v be the parent of u and x be the character on the (v, u) edge.

We know $f(v)$.
Traverse the chain of $f(v), f(f(v))$, $f(f(f(v))$, etc. until you find a node with a child edge labeled x .

Set $f(u)$ equal to that node.

Idea: $f(v)$ is the longest suffix of $L(v)$ that matches a prefix of a pattern, $f(f(v))$ is the longest suffix of $L(f(v))$ that matches a prefix, and so on.

We want the longest (first encountered) one of those suffixes that can be extended with x .

Computing f(u)

Let v be the parent of u and x be the character on the (v, u) edge.

We know $f(v)$.
Traverse the chain of $f(v), f(f(v))$, $f(f(f(v))$, etc. until you find a node with a child edge labeled x .

Set $f(u)$ equal to that node.

Idea: $f(v)$ is the longest suffix of $L(v)$ that matches a prefix of a pattern, $f(f(v))$ is the longest suffix of $L(f(v))$ that matches a prefix, and so on.

We want the longest (first encountered) one of those suffixes that can be extended with x .

Computing f(u)

Let v be the parent of u and x be the character on the (v, u) edge.

We know f(v).
Traverse the chain of $f(v), f(f(v)), f(f(f(v))$, etc. until you find a node with a child edge labeled x .

Set $f(u)$ equal to that node.

Idea: $f(v)$ is the longest suffix of $L(v)$ that matches a prefix of a pattern, $f(f(v))$ is the longest suffix of $L(f(v))$ that matches a prefix, and so on.

We want the longest (first encountered) one of those suffixes that can be extended with x .

Computing f(u)

Let v be the parent of u and x be the character on the (v, u) edge.

We know f(v).
Traverse the chain of $f(v), f(f(v)), f(f(f(v))$, etc. until you find a node with a child edge labeled x .

Set $f(u)$ equal to that node.

Idea: $f(v)$ is the longest suffix of $L(v)$ that matches a prefix of a pattern, $f(f(v))$ is the longest suffix of $L(f(v))$ that matches a prefix, and so on.

We want the longest (first encountered) one of those suffixes that can be extended with x .

Running time of computing the $f(u)$

Consider path v_{1}, \ldots, v_{k} from root to u.
Ip increases by at most 1 when we go from v_{i} to v_{i+1} Ip decreases by at least 1 when we follow an $f(v)$ link.
lp is never negative.
So we can "charge" the cost of following the link to the cost of just walking down the path.

Therefore running time $=$ O(total size of keyword tree) $=$ O(size of pattern set)

One Bug: If P_{i} is a substring of P_{j}

If you follow chain of failure links from v, you eventually find a node that represents P_{i}.
v represents a full pattern $:=v$ is labeled as a full pattern, or there is some node labeled as a full pattern reachable following failure links from v.

One Bug: If P_{i} is a substring of P_{j}

$$
\text { suffix of } L(v)=P_{i}
$$

If you follow chain of failure links from v, you eventually find a node that represents P_{i}.
v represents a full pattern $:=v$ is labeled as a full pattern, or there is some node labeled as a full pattern reachable following failure links from v.

One Bug: If P_{i} is a substring of P_{j}

v represents a full pattern $:=v$ is labeled as a full pattern, or there is some node labeled as a full pattern reachable following failure links from v.

Wu-Mandber

A suffix approach

Wu-Mandber: Check

Length = b

List of patterns whose last block hashes here.

Wu-Mandber: Shift

$B_{i j}$:= block of length b ending at position j in pattern P_{i}.

GoodShift[z] contains the amount that it is safe to shift by if we know T ending at i hashes to z with hash function g.

$$
g(\square)=z
$$

Shift i by GoodShift[g(Tli-b+1, $\ldots, i)]$
If Shift $=0$: perform the Check on previous slide, and shift by 1.

Wu-Mandber: Shift

$B_{i j}$:= block of length b ending at position j in pattern P_{i}.

GoodShift[z] contains the amount that it is safe to shift by if we know T ending at i hashes to z with hash function g.

$$
g(\square)=z
$$

Shift i by GoodShift[g(Tli-b+1, $\ldots, i)]$
If Shift $=0$: perform the Check on previous slide, and shift by 1.

Oracle Machine-based Approaches

(following Navarro \& Raffinot)

Oracle-based Approach for 1 String

Factor Oracle: An FSA where every substring of P is spelled out by

some path to the root.
Factor oracle search:
Build a factor oracle F on reverse(P)
At position i in T: walk backwards, simultaneously walking in F

(A) If we get stuck in F at position j, shift P to start just after j. Works because: y __一 must not be a substring of P.
(B) If we match IPI characters, we report a match and shift by 1.

Using Multi-string Matching For Filtering
 (following Navarro \& Raffinot)

Filtering for Approximate Matches

Let k be the maximum number of mismatches we will allow.

Thm. Let $P=p_{1} \ldots p_{j}$ (where p_{i} are substrings), and let $a_{1} \ldots a_{j}$ be non-negative integers with $\sum_{i} a_{i}=A$.
If Q and P match with $\leq k$ errors, then for some $1 \leq i \leq j$, Q contains a substring that matches p_{i} with $\leq\left\lfloor a_{i} k / A\right\rfloor$ errors.

Proof. If every sub-pattern p_{i} matched with $\geq 1+\left\lfloor a_{i} k / A\right\rfloor$ errors, then there would be $\geq \sum_{i}\left(1+\left\lfloor a_{i} k / A\right\rfloor\right)=k+1$ total errors, a contradiction.

Idea: throw out parts of T to speed up approximate matching.

PEX

If $a_{i}=1$ for all i and $A=k+1$:
\Longrightarrow some subpattern matches with $<\lfloor k /(k+1)\rfloor$ errors
\Longrightarrow some subpattern matches exactly.

1. Divide P into $k+1$ equal-size chunks $p_{1} . . . p_{k+1}$
2. Use a multipattern search algorithm to find occurrences of $p_{1} \ldots p_{k+1}$
3. Search region around each p_{i} match to see if it can be extended to a full P match.

PEX

If $a_{i}=1$ for all i and $A=k+1$:
\Longrightarrow some subpattern matches with $<\lfloor k /(k+1)\rfloor$ errors
\Longrightarrow some subpattern matches exactly.

1. Divide P into $k+1$ equal-size chunks $p_{1} \ldots p_{k+1}$
2. Use a multipattern search algorithm to find occurrences of $p_{1} \ldots p_{k+1}$
3. Search region around each p_{i} match to see if it can be exterded to a full P match.

