
Motif Finding &
Gibbs Sampling

02-714
Slides by Carl Kingsford

DNA -> mRNA -> Protein

TSS

Gene

Intron: not
translated

Exon:
translated

Upstream region

TF Binding sites

Transcription
factor

DNA polymerase

DNA

Finding transcription factor binding sites can tell
us about the cell’s regulatory network.

Transcription Network
169 transcription factors
(excluding sigmas)

3322 edges
 1753 activation,
 1369 repression,
 185 both,
 3 unknown

RNA Polymerase
b/c it makes RNA

into a polymer
is an enzyme

Discovered in 1960; Nobel prize
for its discovery in 1959... oops

1959 Nobel awarded to Severo Ochoa and Arthur
Kornberg for discovering what was mistakenly believed
to be RNA pol.

2006 Nobel awarded to Roger Kornberg (son of
Arthur) for detailed structure of RNA pol.

1960 Sam Weiss and Jared Hurwitz discover the real
RNA pol.

Image of transcription
occurring.
Each “hair” is a piece of RNA
that RNA pol is growing off of
the DNA.

Transcription Factor Binding Sites

RegulonDB (Feb 27, 2010)

Length of E. coli K12 TF binding sites

Transcription Factor Binding Sites

RegulonDB (Feb 27, 2010)

Motif Finding

Given p sequences, find the most mutually similar
length-k subsequences, one from each sequence:

dist(si,sj) = Hamming distance between si and sj.

1. ttgccacaaaataatccgccttcgcaaattgaccTACCTCAATAGCGGTAgaaaaacgcaccactgcctgacag
2. gtaagtacctgaaagttacggtctgcgaacgctattccacTGCTCCTTTATAGGTAcaacagtatagtctgatgga
3. ccacacggcaaataaggagTAACTCTTTCCGGGTAtgggtatacttcagccaatagccgagaatactgccattccag
4. ccatacccggaaagagttactccttatttgccgtgtggttagtcgcttTACATCGGTAAGGGTAgggattttacagca
5. aaactattaagatttttatgcagatgggtattaaggaGTATTCCCCATGGGTAacatattaatggctctta
6. ttacagtctgttatgtggtggctgttaaTTATCCTAAAGGGGTAtcttaggaatttactt

Transcription factor

argmin
s1,...,sp

∑

i<j

dist(si, sj)

Hundreds of papers, many formulations (Tompa05)

Motif-finding by Gibbs Sampling

“Gibbs sampling” is the basis behind a general class of algorithms
that is a type of local search.

It doesn’t guarantee good performance, but often works well in
practice.

Assumes:
1. we know the length k of the motif we are looking for.
2. each input sequence contains exactly 1 real instance of the motif.

Problem. Given p strings and a length k, find the most “mutually
similar” length-k substring from each string.

Gibbs Sampling: Profiles

1. ttgccacaaaataatccgccttcgcaaattgaccTACCTCAATAGCGGTAgaaaaacgcaccactgcctgacag

2. gtaagtacctgaaagttacggtctgcgaacgctattccacTGCTCCTTTATAGGTAcaacagtatagtctga

3. ccacacggcaaataaggagTAACTCTTTCCGGGTAtgggtatacttcagccaatagccgagaatactgccatt

4. ccatacccggaaagagttactccttatttgccgtgtggttagtcgcttTACATCGGTAAGGGTAgggatttt

5. aaactattaagatttttatgcagatgggtattaaggaGTATTCCCCATGGGTAacatattaatggctctta

6. ttacagtctgttatgtggtggctgttaaTTATCCTAAAGGGGTAtcttaggaatttactt

If we knew the starting point of the motif in each sequence, we could
construct a Sequence Profile (PSSM) for the motif:

x1

x2

x3

x4

x5

x6

TACCTCAATAGCGGTA
TGCTCCTTTATAGGTA
TAACTCTTTCCGGGTA
TACATCGGTAAGGGTA
GTATTCCCCATGGGTA
TTATCCTAAAGGGGTA

Sequence Profiles (PSSM)

...

A
C
D
E

T
V

W
Y

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Motif Position

A
m

in
o

A
ci

d

∑ = 1Color ≈ Probability that the ith position
has the given amino acid = ei(x).

Sequence Logos

Motif Position

Height of letter ≈ fraction
of time that letter is
observed at that position.

(Height of all the letters in
a column ≈ to how
conserved the column is)

Gibbs Sampling, Version 1:
Pseudocode

Set (x1, x2, ..., xp) to random positions in each input string.

repeat until the answer (x1, x2, ..., xp) doesn’t change
for i = 1 ... p:

Build a profile Q using sequences at (x1, x2, ..., xp) except xi

Set xi to where the profile Q matches best in string i.

Scoring a Sequence

MRGSAMASINDSKILSLQNKKNALVDTSGYNAEVRVGDNVQLNTIYTNDFKLSSSGDKIIVN

Color ≈ Probability that the ith position
has the given amino acid = ei(x).

x

M=

Score(x) = Pr(x | M) =

LY

i=1

ei(xi)

Score of a string according to profile M =
Product of the probabilities you would
observe the given letters.

Background Frequencies

ScoreCorrected(x) =

Pr(x | M)

Pr(x | background)

=

LY

i=1

ei(xi)

b(xi)

Interested in how different this motif position is from we expect by chance.

Correct for “expect by chance” by dividing by the probability of observing x in a
random string:

b(xi) := probability of observing character xi at random.
Usually computed as (# xi in entire string) / (length of string)

ScoreCorrectedLog(x) = log

LY

i=1

ei(xi)

b(xi)
=

LX

i=1

log

✓
ei(xi)

b(xi)

◆
Often, to avoid multiplying lots of terms, we take the log and then sum:

Gibbs Example
gibbs(["thequickdog", "browndog", "dogwood"], k=3)
1: [8, 1, 2] ['dog', 'row', 'gwo']
2: [8, 5, 0] ['dog', 'dog', 'dog']
F: [8, 5, 0] ['dog', 'dog', 'dog']

gibbs(["thequickdog", "browndog", "dogwood"], k=3)
1: [4, 3, 1] ['uic', 'wnd', 'ogw']
2: [6, 2, 4] ['ckd', 'own', 'ood']
3: [8, 5, 0] ['dog', 'dog', 'dog']
F: [8, 5, 0] ['dog', 'dog', 'dog']

gibbs(["thequickdog", "browndog", "dogwood"], k=3)
1: [2, 0, 1] ['equ', 'bro', 'ogw']
2: [7, 4, 2] ['kdo', 'ndo', 'gwo']
F: [7, 4, 2] ['kdo', 'ndo', 'gwo']

random starting
positions

Small bias toward “o” in
the middle is correct.

Might not find
the optimal.

def gibbs(Seqs, k):
 """Seqs is a list of strings. Find the best motif."""

 # start with random indices
 I = [random.randint(0, len(x) - k) for x in Seqs]

 LastI = None
 while I != LastI: # repeat until nothing changes
 LastI = list(I)

 # iterate through every string
 for i in xrange(len(Seqs)):
 # compute the profile for the sequences except i
 P = profile_for([
 x[j : j + k] for q, (x, j) in enumerate(zip(Seqs, I))
 if q != i
])

 # find the place the profile matches best
 best = None
 for j in xrange(len(Seqs[i]) - k + 1):
 score = profile_score(P, Seqs[i][j : j + k])
 if score > best or best is None:
 best = score
 bestpos = j
 # update the ith position with the best
 I[i] = bestpos

 return I, [x[j : j + k] for x, j in zip(Seqs, I)]

Another Example
gibbs(["aaa123", "678aaa45", "9a7aaab", "32aa19a8aaa"], 3)
1: [0, 5, 0, 2] ['aaa', 'a45', '9a7', 'aa1']
2: [1, 3, 3, 8] ['aa1', 'aaa', 'aaa', 'aaa']
3: [0, 3, 3, 8] ['aaa', 'aaa', 'aaa', 'aaa']
F: [0, 3, 3, 8] ['aaa', 'aaa', 'aaa', 'aaa']

Bias toward “a” in the profile
quickly leads to finding the
implanted “aaa”

gibbs(["aaabbb", "bbbaaabb", 'babaaab', 'ababacaaabac', 'abbbababaaabbbaba'], 3)
1: [1, 4, 0, 4, 11] ['aab', 'aab', 'bab', 'aca', 'bbb']
2: [1, 4, 4, 7, 9] ['aab', 'aab', 'aab', 'aab', 'aab']
F: [1, 4, 4, 7, 9] ['aab', 'aab', 'aab', 'aab', 'aab']
gibbs(["aaabbb", "bbbaaabb", 'babaaab', 'ababacaaabac', 'abbbababaaabbbaba'], 3)
1: [0, 3, 3, 3, 8] ['aaa', 'aaa', 'aaa', 'bac', 'aaa']
2: [0, 3, 3, 6, 8] ['aaa', 'aaa', 'aaa', 'aaa', 'aaa']
F: [0, 3, 3, 6, 8] ['aaa', 'aaa', 'aaa', 'aaa', 'aaa']

Can be multiple
optimal answers

Randomness: Gibbs Sampling
• Run the Gibbs sampling multiple times to make it more likely you find

the global optimal.

• Can increase the use of randomness to further avoid getting stuck in
local optima by choosing new xi randomly.

Set (x1, x2, ..., xp) to random positions in each input string.

repeat until the best (x1, x2, ..., xp) doesn’t change too often
for i = 1 ... p:

Build a profile Q using sequences at (x1, x2, ..., xp) except xi

Choose xi according to the profile probability distribution of Q
in string i.

Lawrence CE et al. (1993)

Profile Probability Distribution

ttgccacaaaataatccgccttcgcaaattgacctacctcaatagcggtaccttccctaattactgcctgacag

Current Profile

left-out
sequence

Score Aj of substring
starting at each position j.

New xi position chosen by
previous version of algorithm

Instead of choosing the position with the best match,
choose a position randomly such that:

Probability of choosing position j =

AjP
i Ai

(Lawrence, et al., Science, 1994)

Recap

• “Motif finding” is the problem of finding a set of common substrings
within a set of strings.

• Useful for finding transcription factor binding sites.

- Gibbs sampling: repeatedly leave one sequence out and optimize
the motif location in the left-out sequence.

- Doesn’t guarantee finding a good solution, but often works.

