Motif Finding \& Gibbs Sampling
 02-714

Slides by Carl Kingsford

DNA \rightarrow mRNA \rightarrow Protein

- Finding transcription factor binding sites can tell us about the cell's regulatory network.

Transcription Network

169 transcription factors (excluding sigmas)

3322 edges
I 753 activation, | 369 repression,
185 both,
3 unknown

Discovered in 1960; Nobel prize for its discovery in 1959... oops

1959 Nobel awarded to Severo Ochoa and Arthur Kornberg for discovering what was mistakenly believed to be RNA pol.

1960 Sam Weiss and Jared Hurwitz discover the real RNA pol.

2006 Nobel awarded to Roger Kornberg (son of Arthur) for detailed structure of RNA pol.

Image of transcription occurring.

Each "hair" is a piece of RNA that RNA pol is growing off of the DNA.

Transcription Factor Binding Sites

Length of DNA Binding Sites per Transcription Factor

RegulonDB (Feb 27, 20I0)

Transcription Factor Binding Sites

Number of DNA Binding Sites of Transcription Factors per Operon

RegulonDB (Feb 27, 20I0)

Motif Finding

Transcription factor

1. ttgccacaaaataatccgccttcgcaaattgaccTACCTCAATAGCGGTAgaaaaacgcaccactgcctgacag
2. gtaagtacctgaaagttacggtctgcgaacgctattccacTGCTCCTMTATAGGTAcaacagtatagtctgatgga
3. ccacacggcaaataaggagTAACTCTTTCCGGGTAtgggtatacttcagccaatagccgagaatactgccattccag
4. ccatacccggaaagagttactccttatttgccgtgtggttagtcgcttTACATCGGTAAGGGTAgggattttacagca
5. aaactattaagatttttatgcagatgggtattaaggaGTATTCCCCATGGGTAacatattaatggctctta
6. ttacagtctgttatgtggtggctgttaaTTATCCTAAAGGGGTAtcttaggaatttactt

Given p sequences, find the most mutually similar length-k subsequences, one from each sequence:

$$
\underset{s_{1}, \ldots, s_{p}}{\operatorname{argmin}} \sum_{i<j} \operatorname{dist}\left(s_{i}, s_{j}\right)
$$

$\operatorname{dist}\left(\mathrm{s}_{\mathrm{i}}, \mathrm{s}_{\mathrm{j}}\right)=$ Hamming distance between s_{i} and s_{j}.
Hundreds of papers, many formulations (Tompa05)

Motif-finding by Gibbs Sampling

Problem. Given p strings and a length k, find the most "mutually similar" length-k substring from each string.
"Gibbs sampling" is the basis behind a general class of algorithms that is a type of local search.

It doesn't guarantee good performance, but often works well in practice.

Assumes:
I. we know the length k of the motif we are looking for.
2. each input sequence contains exactly I real instance of the motif.

Gibbs Sampling: Profiles

If we knew the starting point of the motif in each sequence, we could construct a Sequence Profile (PSSM) for the motif:

TACCTCAATAGCGGTA TGCTCCTTTATAGGTA TAACTCTTTCCGGGTA TACATCGGTAAGGGTA GTATTCCCCATGGGTA TTATCCTAAAGGGGTA

Sequence Profiles (PSSM)

Sequence Logos

Height of letter \approx fraction of time that letter is observed at that position.
(Height of all the letters in
a column \approx to how
conserved the column is)

PS00344 / \#=158

Motif Position

Gibbs Sampling, Version 1: Pseudocode

Set $\left(x_{1}, x_{2}, \ldots, x_{p}\right)$ to random positions in each input string.
repeat until the answer ($\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{p}}$) doesn't change for $\mathrm{i}=1$... p :

Build a profile Q using sequences at ($\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{p}}$) except x_{i} Set x_{i} to where the profile Q matches best in string i.

Scoring a Sequence

Background Frequencies

Interested in how different this motif position is from we expect by chance.
Correct for "expect by chance" by dividing by the probability of observing x in a random string:

$$
\begin{array}{r}
\operatorname{ScoreCorrected}(x)=\frac{\operatorname{Pr}(x \mid M)}{\operatorname{Pr}(x \mid \text { background })}=\prod_{i=1}^{L} \frac{e_{i}\left(x_{i}\right)}{b\left(x_{i}\right)} \\
\left.\begin{array}{r}
\mathrm{b}\left(\mathrm{x}_{\mathrm{i}}\right)
\end{array}\right)=\text { probability of observing character } \mathrm{x}_{\mathrm{i}} \text { at random. } \\
\text { Usually computed as (\# } \mathrm{x}_{\mathrm{i}} \text { in entire string) } / \text { (length of string) }
\end{array}
$$

Often, to avoid multiplying lots of terms, we take the log and then sum:
$\operatorname{ScoreCorrectedLog}(x)=\log \prod_{i=1}^{L} \frac{e_{i}\left(x_{i}\right)}{b\left(x_{i}\right)}=\sum_{i=1}^{L} \log \left(\frac{e_{i}\left(x_{i}\right)}{b\left(x_{i}\right)}\right)$

Gibbs Example

```
gibbs(["thequickdog", "browndog", "dogwood"], k=3)
1: [8, 1, 2] ['dog', 'row', 'gwo']\longleftarrow random starting
2: [8, 5, 0] ['dog', 'dog', 'dog'] positions
F: [8, 5, 0] ['dog', 'dog', 'dog'] Small bias toward"o" in
the middle is correct.
```

gibbs(["thequickdog", "browndog", "dogwood"], k=3)
1: [4, 3, 1] ['uic', 'wnd', 'ogw']
2: [6, 2, 4] ['ckd', 'own', 'ood']
3: [8, 5, 0] ['dog', 'dog', 'dog']
F: [8, 5, 0] ['dog', 'dog', 'dog']
gibbs(["thequickdog", "browndog", "dogwood"], k=3)
1: [2, 0, 1] ['equ', 'bro', 'ogw']
2: [7, 4, 2] ['kdo', 'ndo', 'gwo']
F: [7, 4, 2] ['kdo', 'ndo', 'gwo'] \longleftarrow the optimal.

```
def gibbs(Seqs, k):
    """Seqs is a list of strings. Find the best motif."""
# start with random indices
I = [random.randint(0, len(x) - k) for x in Seqs]
LastI = None
while I != LastI: # repeat until nothing changes
    LastI = list(I)
    # iterate through every string
    for i in xrange(len(Seqs)):
        # compute the profile for the sequences except i
        P = profile_for([
            x[j : j + k] for q, (x, j) in enumerate(zip(Seqs, I))
                if q != i
            ])
        # find the place the profile matches best
        best = None
        for j in xrange(len(Seqs[i]) - k + 1):
            score = profile_score(P, Seqs[i][j : j + k])
            if score > best or best is None:
            best = score
            bestpos = j
        # update the ith position with the best
        I[i] = bestpos
return I, [x[j : j + k] for x, j in zip(Seqs, I)]
```


Another Example

```
gibbs(["aaa123", "678aaa45", "9a7aaab", "32aa19a8aaa"], 3)
1: [0, 5, 0, 2] ['aaa', 'a45', '9a7', 'aa1']
2: [1, 3, 3, 8] ['aa1', 'aaa', 'aaa', 'aaa']
3: [0, 3, 3, 8] ['aaa', 'aaa', 'aaa', 'aaa']
F: [0, 3, 3, 8] ['aaa', 'aaa', 'aaa', 'aaa']
    Bias toward "a" in the profile
    Can be multiple
    optimal answers
                                    quickly leads to finding the
    implanted "aaa"
```

```
gibbs(["aaabbb", "bbbaaabb", 'babaaab', 'ababacaaabac', 'abbbababaaabbbaba'], 3)
1: [1, 4, 0, 4, 11] ['aab', 'aab', 'bab', 'aca', 'bbb']
2: [1, 4, 4, 7, 9] ['aab', 'aab', 'aab', 'aab', 'aab']
F: [1, 4, 4, 7, 9] ['aab', 'aab', 'aab', 'aab', 'aab']
gibbs(["aaabbb", "bbbaaabb", 'babaaab', 'ababacaaabac', 'abbbababaaabbbaba'], 3)
1: [0, 3, 3, 3, 8] ['aaa', 'aaa', 'aaa', 'bac', 'aaa']
2: [0, 3, 3, 6, 8] ['aaa', 'aaa', 'aaa', 'aaa', 'aaa']
F: [0, 3, 3, 6, 8] ['aaa', 'aaa', 'aaa', 'aaa', 'aaa']
```


Randomness: Gibbs Sampling

- Run the Gibbs sampling multiple times to make it more likely you find the global optimal.
- Can increase the use of randomness to further avoid getting stuck in local optima by choosing new x_{i} randomly.

Set $\left(x_{1}, x_{2}, \ldots, x_{p}\right)$ to random positions in each input string.
repeat until the best ($x_{1}, x_{2}, \ldots, x_{p}$) doesn't change too often
for $\mathrm{i}=1 . . \mathrm{p}$:
Build a profile Q using sequences at ($\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{p}}$) except x_{i}
Choose x_{i} according to the profile probability distribution of Q in string i.

Profile Probability Distribution

Instead of choosing the position with the best match, choose a position randomly such that:

$$
\text { Probability of choosing position } j=\frac{A_{j}}{\sum_{i} A_{i}}
$$

Recap

- "Motif finding" is the problem of finding a set of common substrings within a set of strings.
- Useful for finding transcription factor binding sites.
- Gibbs sampling: repeatedly leave one sequence out and optimize the motif location in the left-out sequence.
- Doesn't guarantee finding a good solution, but often works.

