
Suffix Arrays
02-714

Slides by Carl Kingsford

Suffix Arrays

• Even though Suffix Trees are O(n) space, the constant hidden by the
big-Oh notation is somewhat “big”: ≈ 20 bytes / character in good
implementations.

• If you have a 10Gb genome, 20 bytes / character = 200Gb to store
your suffix tree. “Linear” but large.

• Suffix arrays are a more efficient way to store the suffixes that can do
most of what suffix trees can do, but just a bit slower.

• Slight space vs. time tradeoff.

Example Suffix Array
• Idea: lexicographically sort

all the suffixes.

• Store the starting indices of
the suffixes in an array.

s = attcatg$

attcatg$
ttcatg$
tcatg$
catg$
atg$
tg$
g$
$

1
2
3
4
5
6
7
8

$
atg$
attcatg$
catg$
g$
tcatg$
tg$
ttcatg$

8
5
1
4
7
3
6
2

suffix of sindex of suffix

sort the suffixes
alphabetically

the indices just
“come along for

the ride”

Example Suffix Array
• Idea: lexicographically sort

all the suffixes.

• Store the starting indices of
the suffixes in an array.

s = attcatg$

attcatg$
ttcatg$
tcatg$
catg$
atg$
tg$
g$
$

1
2
3
4
5
6
7
8

8
5
1
4
7
3
6
2

suffix of sindex of suffix

sort the suffixes
alphabetically

the indices just
“come along for

the ride”

Another Example Suffix Array
• Idea: lexicographically sort

all the suffixes.

• Store the starting indices of
the suffixes in an array.

s = cattcat$

cattcat$
attcat$
ttcat$
tcat$
cat$
at$
t$
$

1
2
3
4
5
6
7
8

$
at$
attcat$
cat$
cattcat$
t$
tcat$
ttcat$

8
6
2
5
1
7
4
3

suffix of sindex of suffix

sort the suffixes
alphabetically

the indices just
“come along for

the ride”

Another Example Suffix Array
• Idea: lexicographically sort

all the suffixes.

• Store the starting indices of
the suffixes in an array.

s = cattcat$

cattcat$
attcat$
ttcat$
tcat$
cat$
at$
t$
$

1
2
3
4
5
6
7
8

8
6
2
5
1
7
4
3

suffix of sindex of suffix

sort the suffixes
alphabetically

the indices just
“come along for

the ride”

Search via Suffix Arrays

• Does string “at” occur in s?

• Binary search to find “at”.

• What about “tt”?

s = cattcat$

8
6
2
5
1
7
4
3

$
at$
attcat$
cat$
cattcat$
t$
tcat$
ttcat$

√

Counting via Suffix Arrays

• How many times does “at”
occur in the string?

• All the suffixes that start with
“at” will be next to each other
in the array.

• Find one suffix that starts with
“at” (using binary search).

• Then count the neighboring
sequences that start with at.

s = cattcat$

$
at$
attcat$
cat$
cattcat$
t$
tcat$
ttcat$

8
6
2
5
1
7
4
3

K-mer counting
Problem: Given a string s, an integer k, output all pairs (b, i) such
that b is a length-k substring of s that occurs exactly i times.

1. Build a suffix array.

2. Walk down the suffix array, keeping a
CurrentCount count

If the current suffix has length < k, skip it

If the current suffix starts with the same
length-k string as the previous suffix:

increment CurrentCount
else

output CurrentCount and previous
length-k suffix
CurrentCount := 1

Output CurrentCount & length-k suffix.

$
at$
attcat$
cat$
cattcat$
t$
tcat$
ttcat$

8
6
2
5
1
7
4
3

k = 2
CurrentCount

1
1
2
1 (at,2)
2
1 (ca,2)
1 (t$,1)
1 (tc,1)
1 (tt,1)

Constructing Suffix Arrays

• Easy O(n2 log n) algorithm:

sort the n suffixes, which takes O(n log n) comparisons,
where each comparison takes O(n).

• There are several direct O(n) algorithms for constructing suffix
arrays that use very little space.

• The Skew Algorithm is one that is based on divide-and-conquer.

• An simple O(n) algorithm: build the suffix tree, and exploit the
relationship between suffix trees and suffix arrays (next slide)

Relationship Between
Suffix Trees & Suffix Arrays

Red #s = starting position of the
suffix ending at that leaf

Edges leaving each node are
sorted by label (left-to-right).

$

∑ = {$,a,c,t}

at cat

t

cat$$
tcat$

$ tcat$
$ tcat$

cattcat$
12345678

8

s =

6 2
5 1

7 4

3

Leaf labels left to right: 86251743

Relationship Between
Suffix Trees & Suffix Arrays

Red #s = starting position of the
suffix ending at that leaf

Edges leaving each node are
sorted by label (left-to-right).

$

∑ = {$,a,c,t}

at cat

t

cat$$
tcat$

$ tcat$
$ tcat$

cattcat$
12345678

8

s =

6 2
5 1

7 4

3

Leaf labels left to right: 86251743

s = cattcat$

$
at$
attcat$
cat$
cattcat$
t$
tcat$
ttcat$

8
6
2
5
1
7
4
3

Puglisi, Smyth, Turpin. A Taxonomy of Suffix Array Construction Algorithms. ACM Computing Surveys, 39(2):4, 2007.

The Skew Algorithm
Kärkkäinen & Sanders, 2003

• Main idea: Divide suffixes into 3 groups:

• Those starting at positions i=0,3,6,9,.... (i mod 3 = 0)
• Those starting at positions 1,4,7,10,... (i mod 3 = 1)
• Those starting at positions 2,5,8,11,... (i mod 3 = 2)

• For simplicity, assume text length is a multiple of 3 after padding
with a special character.

mississippi$$

. . .
Basic Outline:

• Recursively handle suffixes from the i mod 3 = 1 and i mod 3 = 2
groups.

• Merge the i mod 3 = 0 group at the end.

Handing the 1 and 2 groups

s = mississippi$$

ississ ipp i$$ ssi ssi ppi

ABCC DE E

AEED 4
BAEED 3

CBAEED 2
CCBAEED 1

D 7
ED 6

EED 5

4321765

recursively compute
the suffix array for
tokenized string

triples for groups
1 and 2 groups

assign each triple
a token in

lexicographical
order

Every suffix of t corresponds
to a suffix of s (maybe with
some cruft at the end of it).

t =

Relationship Between t and s

s = mississippi$$
ississ ipp i$$ ssi ssi ppi

ABCC DE E

t = CCBAEED

t4

}

Key Point #1: The lexicographical order of the suffixes of t is the same as
the order of the group 1 & 2 suffixes of s.

Why?

Every suffix of t corresponds to some suffix of s (perhaps with some extra
letters at the end of it --- in this case EED)

Because the tokens are sorted in the same order as the triples, the sort
order of the suffix of t matches that of s.

So: The recursive computational of the suffix array for t gives you the ordering
of the group 1 and group 2 suffixes.

4321765

Radix Sort

• O(n)-time sort for n items when items can be divided into
constant # of digits.

• Put into buckets based on least-significant digit, flatten, repeat
with next-most significant digit, etc.

• Example items: 100 123 042 333 777 892 236

1 2 3 4 5 6 7 8 90

100 123042
333

777
892

236

• # of passes = # of digits

• Each pass goes through the numbers once.

Handling 0 Suffixes
• First: sort the group 0 suffixes, using the representation (s[i], Si+1)

• Since the Si+1 suffixes are already in the array sorted, we can just stably
sort them with respect to s[i], using radix sort.

ississipp i$$ ssi ssippi

• We have to merge the group 0 suffixes into the suffix array for group 1 and 2.

• Given suffix Si and Sj, need to decide which should come first.

• If Si and Sj are both either group 1 or group 2, then the recursively
computed suffix array gives the order.

• If one of i or j is 0 (mod 3), see next slide.

mis sissippi$

1,2-array:

0-array:

Comparing 0 suffix Sj with 1 or 2 suffix Si

(s[i],Si+1) (s[j],Sj+1)<
?

i (mod 3) = 1:

(s[i],s[i+1],Si+2) (s[j],s[j+1],Sj+2)<
?

i (mod 3) = 2:

≣ 2 (mod 3) ≣ 1 (mod 3) ≣ 1 (mod 3) ≣ 2 (mod 3)

Represent Si and Sj using subsequent suffixes:

⇒ the suffixes can be compared quickly because the relative order

of Si+1, Sj+1 or Si+2, Sj+2 is known from the 1,2-array we already
computed.

Running Time

Solves to T(n) = O(n):

• Expand big-O notation: T(n) ≤ cn + T(2n/3) for some c.

• Guess: T(n) ≤ 3cn

• Induction step: assume that is true for all i < n.

• T(n) ≤ cn + 3c(2n/3) = cn + 2cn = 3cn ☐

T(n) = O(n) + T(2n/3)

time to sort and
merge

array in recursive calls
is 2/3rds the size of
starting array

Faster Suffix Array Search

• The basic binary search takes O(|P| log |T|):

• it takes O(log |T|) iterations

• each comparison taking O(|P|) time

• We can do it faster by avoiding the O(|P|) time for comparison if
we are willing to keep some extra values associated with the
array.

• Follows Gusfield, section 7.14

Speedup #1

U

D

a a a t t t c

a a t t z c

a a . . .

=P

u

d

u := length of longest prefix of U that
matches a prefix of P

d := length of longest prefix of D that
matches a prefix of P

Speedup: maintain u,d throughout
algorithm. Begin comparison of P with
M at position min(u,d)

M

a a a t t w d

Speedup #2: Lcp(i,j) array

Def. lcp(X,Y) is the length of the longest common prefix of strings X
and Y.

Case #1: lcp(U,M) > u = lcp(U,P)

U

P

M

u lcp(U,M)

z

x

x x < z because U < P (since P ∈ [U,D])

⟹ M < P and therefore the new
range should be [M,D]

Speedup #2: Case #2 & #3
Case #2: lcp(U,M) < u = lcp(U,P)

U
P

M

ulcp(U,M)

x

z

x x < z because U < M (by definition)
⟹ P < M and the new range
should be [U,M]

Case #3: lcp(U,M) = u = lcp(U,P)

U
P

M

ulcp(U,M)

b

c

a We have no information about a,b,c
but we can start comparing at
position u.

Algorithm

Case #0: u = d: start comparing from position u+1 = d+1.

Algorithm: If u = d, apply case 0.

If u > d, apply case 1, 2 or 3 as appropriate

If u < d, apply cases 1’, 2’, or 3’ that are the symmetric
version of cases 1,2,3 swapping D for U.

Running Time

Proof. Only cases 0 and 3 (and 3’) actually compare any characters.

They always start comparing at max(u,d) [for case 0 this is trivial, for case 3
this is true b/c we assume u > d].

If they match k characters of P, then one of u or d will be incremented by k,
and those characters will never be compared again, so there are at most
O(|P|) such comparisons.

The mismatch character may be compared more than once.

But there can be only 1 mismatch / iteration. There are O(log m) iterations,
so there are at most O(log m) mismatches.

∴Total # of comparisons = O(|P| + log m).

Thm. Given the lcp(X,Y) values, searching for a string P in a suffix array
of length m now takes O(|P| + log m) time.

Pre-computing the Lcp(i,j) values
Notation. Lcp(i,j) := longest common prefix between A(i) and A(j), where
A(i) is the suffix in position i of the suffix array A.

Lcp(i,j) values depend only on the suffix array.

While there are O(m2) possible values, only O(m) of them will ever be
accessed in any suffix array search. Why?

Pre-computing the Lcp(i,j) values
Notation. Lcp(i,j) := longest common prefix between A(i) and A(j), where
A(i) is the suffix in position i of the suffix array A.

Lcp(i,j) values depend only on the suffix array.

While there are O(m2) possible values, only O(m) of them will ever be
accessed in any suffix array search. Why?

Pre-computing the Lcp(i,j) values
Notation. Lcp(i,j) := longest common prefix between A(i) and A(j), where
A(i) is the suffix in position i of the suffix array A.

Lcp(i,j) values depend only on the suffix array.

While there are O(m2) possible values, only O(m) of them will ever be
accessed in any suffix array search. Why?

Pre-computing the Lcp(i,j) values
Notation. Lcp(i,j) := longest common prefix between A(i) and A(j), where
A(i) is the suffix in position i of the suffix array A.

Lcp(i,j) values depend only on the suffix array.

While there are O(m2) possible values, only O(m) of them will ever be
accessed in any suffix array search. Why?

Pre-computing the Lcp(i,j) values
Notation. Lcp(i,j) := longest common prefix between A(i) and A(j), where
A(i) is the suffix in position i of the suffix array A.

Lcp(i,j) values depend only on the suffix array.

While there are O(m2) possible values, only O(m) of them will ever be
accessed in any suffix array search. Why?

Pre-computing the Lcp(i,j) values
Notation. Lcp(i,j) := longest common prefix between A(i) and A(j), where
A(i) is the suffix in position i of the suffix array A.

Lcp(i,j) values depend only on the suffix array.

While there are O(m2) possible values, only O(m) of them will ever be
accessed in any suffix array search. Why?

= complete binary tree with m leaves.
Has O(m) nodes entirely, so at most O(m) ranges are considered.

Computing Lcp(i, j)

Thm. Lcp(i,j) = min Lcp(k, k+1), where k = i,...,j-1.

Lcp(i,j)

k*
k*+1

Lcp(k,k+1) ≥Lcp(i,j) for all k because
everything in this range shares the
same Lcp(i,j) prefix at least.

Other consecutive pairs can have
larger Lcp, but not smaller than k* by
the minimality of Lcp(k*, k* +1).

⇒By transitivity, Lcp(i,j) ≥ Lcp(k*, k* +1).

Lcp(k,k+1) can be computed in O(m) time by traversing a suffix tree to find the
depth of the lca of k and k+1.

Computing Lcp(i, j)

Thm. Lcp(i,j) = min Lcp(k, k+1), where k = i,...,j-1.

i

Lcp(i,j)

k*
k*+1

Lcp(k,k+1) ≥Lcp(i,j) for all k because
everything in this range shares the
same Lcp(i,j) prefix at least.

Other consecutive pairs can have
larger Lcp, but not smaller than k* by
the minimality of Lcp(k*, k* +1).

⇒By transitivity, Lcp(i,j) ≥ Lcp(k*, k* +1).

Lcp(k,k+1) can be computed in O(m) time by traversing a suffix tree to find the
depth of the lca of k and k+1.

Computing Lcp(i, j)

Thm. Lcp(i,j) = min Lcp(k, k+1), where k = i,...,j-1.

i j

Lcp(i,j)

k*
k*+1

Lcp(k,k+1) ≥Lcp(i,j) for all k because
everything in this range shares the
same Lcp(i,j) prefix at least.

Other consecutive pairs can have
larger Lcp, but not smaller than k* by
the minimality of Lcp(k*, k* +1).

⇒By transitivity, Lcp(i,j) ≥ Lcp(k*, k* +1).

Lcp(k,k+1) can be computed in O(m) time by traversing a suffix tree to find the
depth of the lca of k and k+1.

Recap

• Suffix arrays can be used to search and count substrings.

• Construction:

• Easily constructed in O(n2 log n)

• Simple algorithms to construct them in O(n) time.

• More complicated algorithms to construct them in O(n) time
using even less space.

• More space efficient than suffix trees: just storing the original
string + a list of integers.

