Gap Penalties
 02-714
 Slides by Carl Kingsford

General Gap Penalties

AAAGAATTCA
A-A-A-T-CA
vs. AAAGAATTCA

These have the same score, but the second one is often more plausible.

A single insertion of "GAAT" into the first string could change it into the second.

- Now, the cost of a run of k gaps is gap $\times k$
- It might be more realistic to support general gap penalty, so that the score of a run of k gaps is $\operatorname{gap}(k)<\operatorname{gap} \times k$.
- Then, the optimization will prefer to group gaps together.

General Gap Penalties

$$
\begin{array}{lll}
\text { AAAGAATTCA } & \text { vs. } & \text { AAAGAATTCA } \\
\text { A-A-A-T-CA } & \text { AAA----TCA }
\end{array}
$$

Previous DP no longer works with general gap penalties because the score of the last character depends on details of the previous alignment:

$$
\begin{aligned}
& \text { AAAGAA|C } \\
& \text { AAA }---
\end{aligned}
$$

$$
\begin{array}{ll}
& \text { AAAGAAT|C } \\
\text { vs. } & \text { AAA }----
\end{array}
$$

Instead, we need to "know" how long a final run of gaps is in order to give a score to the last subproblem.

Three Matrices

We now keep 3 different matrices:
$M[i, j]=$ score of best alignment of $x[I . . i]$ and $y[I . . j]$ ending with a charactercharacter match or mismatch.
$X[i, j]=$ score of best alignment of $x[I . . i]$ and $y[I . . j]$ ending with a space in X. $Y[i, j]=$ score of best alignment of $x[I . . i]$ and $y[I . . j]$ ending with a space in Y.

$$
\begin{gathered}
M[i, j]=\operatorname{match}(i, j)+\max \left\{\begin{array}{l}
M[i-1, j-1] \\
X[i-1, j-1] \\
Y[i-1, j-1]
\end{array}\right. \\
X[i, j]=\max \begin{cases}M[i, j-k]-\operatorname{gap}(k) & \text { for } 1 \leq k \leq j \\
Y[i, j-k]-\operatorname{gap}(k) & \text { for } 1 \leq k \leq j\end{cases} \\
Y[i, j]=\max \begin{cases}M[i-k, j]-\operatorname{gap}(k) & \text { for } 1 \leq k \leq i \\
X[i-k, j]-\operatorname{gap}(k) & \text { for } 1 \leq k \leq i\end{cases}
\end{gathered}
$$

The M Matrix

We now keep 3 different matrices:
$M[i, j]=$ score of best alignment of $x[I . . i]$ and $y[I . . j]$ ending with a charactercharacter match or mismatch.
$X[i, j]=$ score of best alignment of $x[I . . i]$ and $y[I . . j]$ ending with a space in X.
$Y[i, j]=$ score of best alignment of $x[I . . i]$ and $y[I . . j]$ ending with a space in Y.
By definition, alignment ends in a match.

$$
M[i, j]=\operatorname{match}(i, j)+\max \left\{\begin{array}{l}
M[i-1, j-1] \\
X[i-1, j-1] \\
Y[i-1, j-1]
\end{array}\right]
$$

The X (and Y) matrices

$$
\begin{aligned}
& k \text { decides how long to } \\
& \text { make the gap. } \\
& \text { We have to make the } \\
& \text { whole gap at once in order } \\
& \text { to know how to score it. } \\
& X[i, j]=\max \begin{cases}M[i, j-k]-\operatorname{gap}(k) & \text { for } 1 \leq k \leq j \\
Y[i, j-k]-\operatorname{gap}(k) & \text { for } 1 \leq k \leq j\end{cases} \\
& \uparrow \\
& \text { i k } \\
& x=\mathrm{G}-\mathrm{Cl}^{-} \\
& y=-\mathrm{CGTG}
\end{aligned}
$$

The X (and Y) matrices

k decides how long to make the gap.
We have to make the whole gap at once in order to know how to score it.

$$
X[i, j]=\max \begin{cases}M[i, j-k]-\operatorname{gap}(k) & \text { for } 1 \leq k \leq j \\ Y[i, j-k]-\operatorname{gap}(k) & \text { for } 1 \leq k \leq j\end{cases}
$$

This case is automatically handled.

Running Time for Gap Penalties

$$
\begin{aligned}
& M[i, j]=\operatorname{match}(i, j)+\max \left\{\begin{array}{l}
M[i-1, j-1] \\
X[i-1, j-1] \\
Y[i-1, j-1]
\end{array}\right. \\
& X[i, j]=\max \left\{\begin{array}{l}
M[i, j-k]-\operatorname{gap}(k) \text { for } 1 \leq k \leq j \\
Y[i, j-k]-\operatorname{gap}(k) \text { for } 1 \leq k \leq j
\end{array}\right. \\
& Y[i, j]=\max \begin{cases}M[i-k, j]-\operatorname{gap}(k) & \text { for } 1 \leq k \leq i \\
X[i-k, j]-\operatorname{gap}(k) & \text { for } 1 \leq k \leq i\end{cases}
\end{aligned}
$$

Final score is $\max \{M[n, m], X[n, m], Y[n, m]\}$.
How do you do the traceback?
Runtime:

- Assume $|X|=|Y|=n$ for simplicity: $3 n^{2}$ subproblems
- $\quad 2 n^{2}$ subproblems take $O(n)$ time to solve (because we have to try all k)
$\Rightarrow \mathrm{O}\left(\mathrm{n}^{3}\right)$ total time

Affine Gap Penalties

- $O\left(n^{3}\right)$ for general gap penalties is usually too slow...
- We can still encourage spaces to group together using a special case of general penalties called affine gap penalties:
gap_start $=$ the cost of starting a gap
gap_extend = the cost of extending a gap by one more space
- Same idea of using 3 matrices, but now we don't need to search over all gap lengths, we just have to know whether we are starting a new gap or not.

Affine Gap Penalties

$$
\underset{\substack{\text { match } \\
\text { between }}}{M[i, j]}=\operatorname{match}(i, j)+\max \left\{\begin{array}{l}
M[i-1, j-1] \\
X[i-1, j-1] \\
Y[i-1, j-1]
\end{array}\right.
$$

If previous
alignment encls in match, this is a
$X[i, j]=\max \{$ gap_extend $+X[i, j-1]$
gap in $\times \quad$ gap_start + gap_extend $+Y[i, j-1]$
$\underset{\text { gap in } y}{Y[i, j]}=\max \left\{\begin{array}{l}\text { gap_start }+ \text { gap_extend }+M[i-1, j] \\ \text { gap_start }+ \text { gap_extend }+X[i-1, j] \\ \text { gap_extend }+Y[i-1, j]\end{array}\right.$

Affine Gap as Finite State Machine

Affine Base Cases (Global)

- $M[0, i]=$ "score of best alignment between 0 characters of x and i characters of y that ends in a match" $=-\infty$ because no such alignment can exist.
- $X[0, i]=$ "score of best alignment between 0 characters of x and i characters of y that ends in a gap in $x "=$ gap_start $+i \times$ gap_extend because this alignment looks like:

- $X[i, 0]=$ "score of best alignment between i characters of x and 0 characters of y that ends in a gap in $X "=-\infty$

- $M[i, 0]=M[0, i]$ and $Y[0, i]$ and $Y[i, 0]$ are computed using the same logic as $X[i, 0]$ and $X[0, i]$

Affine Gap Runtime

- $3 m n$ subproblems
- Each one takes constant time
- Total runtime $\mathrm{O}(m n)$:
- back to the run time of the basic running time.

Traceback

- Arrows now can point between matrices.
- The possible arrows are given, as usual, by the recurrence.
- E.g. What arrows are possible leaving a cell in the M matrix?

Why do you "need" 3 matrices?

- Alternative WRONG algorithm:

```
M[i][j] = max(
    M[i-1][j-1] + cost(x[i], y[i]),
    M[i-1][j] + gap + (gap_start if Arrow[i-1][j] != \hookleftarrow ),
    M[j][i-1] + gap + (gap_start if Arrow[i][j-1] != \downarrow )
)
```

WRONG Intuition: we only need to know whether we are starting a gap or extending a gap.

The arrows coming out of each subproblem tell us how the best alignment ends, so we can use them to decide if we are starting a new gap.

The best alignment
up to this cell ends

PROBLEM:The best alignment for strings
$\mathrm{x}[\mathrm{I} . \mathrm{i}]$ and $\mathrm{y}[\mathrm{I} . . \mathrm{j}]$ doesn't have to be used
in the best alignment between
$x[1 . . i+I]$ and $y[1 . . j+I]$

Why 3 Matrices: Example

match $=10$, mismatch $=-2$, gap $=-7$, gap_start $=-15$

CART
CA-T

$$
\operatorname{OPT}(4,3)=\text { optimal score }=30-15-7=8
$$

CARTS
$\operatorname{WRONG}(5,3)=\overbrace{30-15-7}-15-7=-14$
CA-T-

$$
\operatorname{OPT}(5,3)=20-2-15-14=-1 \mid
$$

CARTS
$C A D-\infty$
4
this is why we need to keep the X and Y matrices around. they tell us the score of ending with a gap in one of the sequences.

Recap

- General gap penalties require 3 matrices and $O\left(n^{3}\right)$ time.
- Affine gap penalties require 3 matrices, but only $\mathrm{O}\left(n^{2}\right)$ time.

