Space-Efficient Alignment: Hirschberg's Algorithm

02-714

Space Usage

- $\mathrm{O}\left(\mathrm{n}^{2}\right)$ is pretty low space usage, but for a 10 Gb genome, you'd need a huge amount of memory.
- Can we use less?
- Hirschberg's algorithm

Remember the meaning of a cell

Linear Space for Alignment Scores

- If you are only interested in the cost or score of an alignment, you need to use only $O(n)$ space.
- How?

Linear Space for Alignment Scores

- If you are only interested in the cost or score of an alignment, you need to use only $O(n)$ space.
- How?

When filling in an entry (gray box) we only look at the current and previous rows.

Only need to keep those two rows in memory.

We can do more...

- Given 2 strings X and Y, we can, in linear space and $\mathrm{O}(\mathrm{nm})$ time, compute the cost of aligning...
- every prefix of X with Y
- X with every prefix of Y
- a particular prefix of X with every prefix of Y
- a particular suffix of X with every suffix of Y
- How can we do that?

Best Alignment Between Prefix of X and Y

Score of an optimal alignment
between Y and a prefix of X

Fill in the matrix by columns...

What is this column?

Fill in the matrix by columns...

What is this column?

Best scores between X and all prefixes of Y

Fill in the matrix by columns...

Cost of Alignment Between X and All Suffixes of Y

Cost of Alignment Between X and All Suffixes of Y

Exactly the same reasoning as doing the "forward" dynamic programming.

$$
B[i, j]=\min \left\{\begin{array}{l}
\operatorname{cost}\left(x_{i}, y_{j}\right)+B[i+1, j+1] \\
\operatorname{gap}+B[i, j+1] \\
\operatorname{gap}+B[i+1, j]
\end{array}\right.
$$

Cost of Alignment Between X and All Suffixes of Y

"Backward" dynamic programming.

Exactly the same reasoning as doing the "forward" dynamic programming.

Best alignment
between suffix $x[10 .$.
and suffix y[6..]

$$
B[i, j]=\min \left\{\begin{array}{l}
\operatorname{cost}\left(x_{i}, y_{j}\right)+B[i+1, j+1] \\
\operatorname{gap}+B[i, j+1] \\
\operatorname{gap}+B[i+1, j]
\end{array}\right.
$$

Can We Find the Alignment in O(n) Space?

- Surprisingly, yes, we can output the optimal alignment in linear space.
- This will cost us some extra computation but only a constant factor
- For such a dramatic reduction in space, it's often worth it.
- Idea: a divide-and-conquer algorithm to compute half alignments.

Divide \& Conquer

- General algorithmic design technique:
- Split large problem into a few subproblems.
- Recursively solve each subproblem.
- Merge the resulting answers.
- You probably know such algorithms:
- Merge sort
- Quick sort

The Best Path Uses Some Cell in the Middle Column

Notation

- AlignValue $(x, y):=$ compute the cost of the best alignment between x and y in $O(\min |x|,|y|)$ space.
- Finding the actual alignment is equivalent to finding all the cells that the optimal backtrace passes through.
- Call the optimal backtrace the ArrowPath.

First Attempt At Space Efficient Alignment

In the optimal alignment, the first $n / 2$ characters of x are aligned with the first q characters of y for some q.

$$
\begin{aligned}
& \mathrm{y}=\begin{array}{l}
12345678 \\
\mathrm{x}= \\
\mathrm{y}= \\
=\underbrace{\mathrm{A}-\mathrm{GT}-\mathrm{CT} T \mathrm{CTG}}_{\mathrm{q}=3}
\end{array} \\
& \hline
\end{aligned}
$$

We don't know q, so we have to try all possible q.

```
ArrowPath := []
def Align(x, y):
    n := |x|; m := | y |
    if n or m s 2: use standard alignment O(n) or O(m) space
    for q := 0..m:
        v1 := AlignValue(x[1..n/2], y[1..q]) O(n+m) space
        v2 := AlignValue(x[n/2+1..n], y[q+1..m]) O(n+m) space
        if v1 + v2 < best: bestq = q; best = v1 + v2
    Add (n/2, bestq) to ArrowPath
    Align(x[1..n/2], y[1..bestq])
    the cost of the alignment
    Align(x[n/2+1..n], y[bestq+1..m])
```


The Best Path Uses Some Cell in the Middle Column

Problem

Problem

- This works in linear space.

Problem

- This works in linear space.
- BUT: not in $\mathrm{O}(\mathrm{nm})$ time.Why?

Problem

- This works in linear space.
- BUT: not in $\mathrm{O}(n m)$ time.Why?
- It's too expensive to solve all those AlignValue problems in the for loop.

Problem

- This works in linear space.
- BUT: not in $\mathrm{O}(\mathrm{nm})$ time.Why?
- It's too expensive to solve all those AlignValue problems in the for loop.
- Define:
- AlIYPrefixCosts(x, i, y) = returns an array of the scores of optimal alignments between $\times[1 . . i]$ and all prefixes of Y.
- AllYSuffixCosts(x, $\mathrm{i}, \mathrm{y})=$ returns an array of the scores of optimal alignments between $x[i . . n]$ and all suffixes of y.
- These are implemented as described in previous slides by returning the last row or last column of the DP matrix.

Space Efficient Alignment

12345678
$\mathrm{x}=\mathrm{ACGTACTG}$
$y=A-G T-C T G$
We still try all possible q, but we use the fact that we can compute the cost between a given prefix and all suffixes in linear space.

```
ArrowPath := []
def Align(x, y):
    n := |x|; m := | y 
    if n or m \leq 2: use standard alignment }O(n)\mathrm{ or O(m) space
    MPrefix := AllYPrefixCosts(x, n/2, y)
```



```
    if cost < best: bestq = q; best = cost
    Add (n/2, bestq) to ArrowPath
    Align(x[1..n/2], y[1..bestq])
    Align(x[n/2+1..n], y[bestq+1..m])
                                    the cost of the alignment, using the costs of aligning \(X\) to prefixes and suffixes of \(Y\)
```


Running Time Recurrence, I

Full recurrence:

$$
\begin{aligned}
& T(n, 2) \leq c n \\
& T(2, m) \leq c m \\
& T(n, m) \leq c m n+\underbrace{T(n / 2, q)}_{\text {Align(x[1..n/2], y[1..bestq] })}+\overbrace{T(n / 2, m-q)}^{\text {Align(x[n/2+1..n], y[best }}
\end{aligned}
$$

Too complicated because we don't know what q is.

Simplify: assume both sequences have length n, and that we get a perfect split in half every time, $q=n / 2$:

$$
T(n) \leq 2 T(n / 2)+c n^{2}
$$

Solves as:

$$
T(n)=O\left(n^{2}\right) \quad \Rightarrow \text { guess } O(\mathrm{~nm})
$$

Running Time Recurrence, 2

$$
\begin{aligned}
& T(n, 2) \leq c n \\
& T(2, m) \leq c m \\
& T(n, m) \leq c m n+T(n / 2, q)+T(n / 2, m-q)
\end{aligned}
$$

Guess: $T(n, m) \leq k m n$, for some k.
Proof, by induction:
Base cases: If $\mathrm{k} \geq \mathrm{c}$ then $\mathrm{T}(\mathrm{n}, 2) \leq \mathrm{cn} \leq \mathrm{c} 2 \mathrm{n} \leq \mathrm{k} 2 \mathrm{n}=\mathrm{kmn}$ Induction step: Assume $\mathbf{T}\left(\mathbf{m}^{\prime}, \mathbf{n}^{\prime}\right) \leq \mathbf{k} \mathbf{m}^{\prime} \mathbf{n}^{\prime}$ for pairs ($\mathrm{m}^{\prime}, \mathrm{n}^{\prime}$) with a product smaller than mn :

$$
\begin{aligned}
T(m, n) & \leq c m n+T(n / 2, q)+T(n / 2, m-q) \\
& \leq c m n+k q n / 2+k(m-q) n / 2 \leftarrow \text { apply induction hypothesis } \\
& =c m n+k q n / 2+k m n / 2-k q n / 2 \\
& =(c+k / 2) m n \\
k=2 c & \Longrightarrow T(m, n) \leq 2 c m n=k m n
\end{aligned}
$$

Recap

- Can compute the cost of an alignment easily in linear space.
- Can compute the cost of a string with all suffixes of a second string in linear space.
- Divide and conquer algorithm for computing the actual alignment (traceback path in the DP matrix) in linear space.
- Still uses $\mathrm{O}(\mathrm{nm})$ time!

