
String Matching Z
(Following Gusfield Chapter 2)

Exact String Search

Bolzer et al, PLoS Biol. 2005

Microscopy of chromosomes of a human female (karyotype):

ggccgggccctgtgaccacagtccacatcacaccaggacacagaggaagggccgggccctgtgaccacagtccacatcacaccaggacacagaggaagggccgggcctcatgaccacagt
gtccacatcaca

Where does this string occur in the genome?

Exact String Matching

• Motivation is obvious:

- search for words in long documents, webpages, etc.

- find subsequences of DNA, proteins that are known to be important.

• We’ll see 4 efficient algorithms for this problem.

Exact String Matching Problem. Given a (long) string
T and a shorter string P, find all occurrences of P in T.
Occurrences of P are allowed to overlap.

The Simple (Slow) Algorithm

SimpMatch(T, P):
for i = 1..|T|:
j = 1
while j ≤ |P| and T[i+j-1] == P[j]:
j += 1

if j == |P|+1: print “Occurs at”, i

• Runs in O(|T|×|P|) time.

• Information gathered in while loop at iteration i is ignored in
iteration i+1.

• Key idea for speeding it up: use what we learned about T in the
while loop to increment i by more than 1 in the outer loop.

Exploiting Patterns in P

• After comparing “happy” to “happe” at iteration i,

- we know that T[i...i+3] = “happ” = P[1...4]

- we can deduce that there can be no match at i+1 because
T[i+1] = P[2] = “a” but P[1] = “h”

- in fact, since “h” does not appear in T[i...i+3] = P[1...4], we could set i = i + 4

• Since T will have matched some part of P, it is the similarities between
various parts of P that allow us to make these deductions.

⇒ Preprocess P to find these similarities.

All this happened, more or less.
happy

i

happy

Z-Algorithm

Fundamental Preprocessing

• P = “aardvark”: Z2 = 1, Z6 = 1

• P = “alfalfa”: Z4 = 4

• P = “photophosphorescent”: Z6 = Z10 = 3

Def. Zi(P) = the length of the longest substring of P that
starts at i > 1 and matches a prefix of P.

i

P:

i + Zi - 1

ZiZi

String Search With Zi

Why does this work?

• Zi = |P| if and only if the string starting at i matches P.

• Running time is O(|P| + |T| + ZS), where ZS is the time to compute the Zi

for T.

• Next: an O(|P| + |T|) algorithm for computing the Zi.

ZMatch(T, P):
S = P$T
Compute all Zi for S
return all i-|P|-1 such that Zi = |P|

(map indices of S to indices of T)

Z Boxes

• Algorithm for computing Zi will iteratively compute Zk given:

- Z2...Zk-1, and

- the boundaries l, r of the rightmost Z-box found starting
someplace in 2...k-1.

Zi

i i+Zi -1

Def. Z-box at i is the substring starting at i and continuing
to i+Zi-1. This is the substring that matches the prefix.
There is no Z-box at i if Zi = 0.

Z-box at i

Z Algorithm
• Input: Z2...Zk-1, and the boundaries l, r of the rightmost Z-box found

starting someplace in 2...k-1.

• Output: Zk, and updated l, r

1. If k > r, explicitly compute Zk by comparing with prefix.
If Zk > 0: r = k + Zk - 1 and l = k (since this is a new farther right Z-box).

2. If k ≤ r, this is the situation:

k rlk’ = k-l+1

ββ

k rlk’ = k-l+1

ββ

k rlk’ = k-l+1

ββ

Zk’ < β: Zk’ ≥ β:

Set Zk = Zk’ and leave l, r unchanged. Explicitly compare after r to set Zk.
l = k, r = point where comparison failed

Two subcases:

Analysis

• Runs in O(|P|) time:

- only match characters covered by a Z-box once, so there are O(|P|)
matches.

- every iteration contains at most one mismatch, so there are O(|P|)
mismatches.

• Correctness follows by induction and the arguments we made in the
description of the algorithm.

• Immediately gives an O(|P| + |T|)-time algorithm for string matching
as described a few slides ago.

- O(|P| + |T|) is the best possible worst-case running time, since you might have
to look at the whole input.

- But better algorithms exist in practice that, for real instances, have expected
sublinear runtime.

