String Matching Z

(Following Gusfield Chapter 2)

Exact String Search

Microscopy of chromosomes of a human female (karyotype):

ggccgggccctgtgaccacagtccacatcacaccaggacacagaggaagggccgggccctgtgaccacagtccacatcacaccaggacacagaggaagggccgggcctcatgaccacagt gtccacatcaca

Where does this string occur in the genome?

Exact String Matching

Exact String Matching Problem. Given a (long) string T and a shorter string P, find all occurrences of P in T. Occurrences of P are allowed to overlap.

- Motivation is obvious:
- search for words in long documents, webpages, etc.
- find subsequences of DNA, proteins that are known to be important.
- We'll see 4 efficient algorithms for this problem.

The Simple (Slow) Algorithm

```
SimpMatch(T, P):
    for i = 1.. |T|:
    j = 1
    while j \leq |P| and T[i+j-1] == P[j]:
        j += 1
        if j == |P|+1: print "Occurs at", i
```

- Runs in $\mathrm{O}(|T| \times|P|)$ time.
- Information gathered in while loop at iteration i is ignored in iteration $i+1$.
- Key idea for speeding it up: use what we learned about T in the while loop to increment i by more than 1 in the outer loop.

Exploiting Patterns in P

- After comparing "happy" to "happe" at iteration i,
- we know that $T[i . . . i+3]=$ "happ" $=P[1 . . .4]$
- we can deduce that there can be no match at $i+1$ because $T[i+1]=\mathrm{P}[2]=$ "a" but $P[1]=$ "h"
- in fact, since "h" does not appear in $T[i . . . i+3]=P[1 \ldots 4]$, we could set $i=i+4$
- Since T will have matched some part of P, it is the similarities between various parts of P that allow us to make these deductions.
\Longrightarrow Preprocess P to find these similarities.

Z-Algorithm

Fundamental Preprocessing

Def. $Z_{i}(P)=$ the length of the longest substring of P that starts at $i>1$ and matches a prefix of P.

- $P=$ "aardvark": $Z_{2}=1, Z_{6}=1$
- $P=$ "alfalfa": $\mathrm{Z}_{4}=4$
- $P=$ "photophosphorescent": $\mathrm{Z}_{6}=\mathrm{Z}_{10}=3$

String Search With Z_{i}

```
ZMatch(T, P):
    S = P$T
    Compute all Zi for S
    return all i-|P|-1 such that }\mp@subsup{Z}{i}{}=|P
    (map indices of S to indices of T)
```

Why does this work?

- $\quad Z_{i}=|P|$ if and only if the string starting at i matches P.
- Running time is $\mathrm{O}\left(|P|+|T|+Z_{S}\right)$, where Z_{S} is the time to compute the Z_{i} for T.
- Next: an $\mathrm{O}(|P|+|T|)$ algorithm for computing the Z_{i}.

Z Boxes

Def. Z-box at i is the substring starting at i and continuing to $i+Z_{i-1}$. This is the substring that matches the prefix. There is no Z-box at i if $Z_{i}=0$.

- Algorithm for computing Z_{i} will iteratively compute Z_{k} given:
- $\quad Z_{2} \ldots Z_{k-1}$, and
- the boundaries l, r of the rightmost Z-box found starting someplace in 2... $k-1$.

Z Algorithm

- Input: $Z_{2} \ldots . Z_{k-1}$, and the boundaries l, r of the rightmost Z-box found starting someplace in $2 . . . k-1$.
- Output: Z_{k}, and updated l, r

1. If $k>r$, explicitly compute Z_{k} by comparing with prefix. If $Z_{k}>0: r=k+Z_{k}-1$ and $l=k$ (since this is a new farther right Z-box).
2. If $k \leq r$, this is the situation:

Two subcases:

Set $Z_{k}=Z_{k^{\prime}}$ and leave l, r unchanged.

Explicitly compare after r to set Z_{k}. $l=k, r=$ point where comparison failed

Analysis

- Runs in $\mathrm{O}(|P|)$ time:
- only match characters covered by a Z-box once, so there are $\mathrm{O}(|P|)$ matches.
- every iteration contains at most one mismatch, so there are $\mathrm{O}(|P|)$ mismatches.
- Correctness follows by induction and the arguments we made in the description of the algorithm.
- Immediately gives an $\mathrm{O}(|P|+|T|)$-time algorithm for string matching as described a few slides ago.
- $\quad \mathrm{O}(|P|+|T|)$ is the best possible worst-case running time, since you might have to look at the whole input.
- But better algorithms exist in practice that, for real instances, have expected sublinear runtime.

