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Hierarchies

Many ways to represent tree-like information:
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Definition – Rooted Tree

• Λ is a tree

• If T1, T2, ..., Tk are trees with roots r1, r2, ..., rk and r is 
a node ∉ any Ti, then the structure that consists of 
the Ti, node r, and edges (r, ri) is also a tree.
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Terminology

• r is the parent of its children r1, r2, ..., rk.

• r1, r2, ..., rk are siblings.

• root = distinguished node, usually drawn 
at top. Has no parent.

• If all children of a node are Λ, the node is 
a leaf. Otherwise, the node is a internal 
node.

• A path in the tree is a sequence of nodes 
u1, u2, ..., um such that each of the edges 
(u, ui+1) exists.

• A node u is an ancestor of v if there is a 
path from u to v.

• A node u is a descendant of v if there is a 
path from v to u.
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Height & Depth

• The height of node u is the length of the longest path from u to a leaf.

• The depth of node u is the length of the path from the root to u.

• Height of the tree = maximum depth of its nodes. 

• A level is the set of all nodes at the same depth.  
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Subtrees, forests, and graphs

• A subtree rooted at u is the tree formed from u and all 
its descendants.

• A forest is a (possibly empty) set of trees. 
The set of subtrees rooted at the children of r form a 
forest.

• As we’ve defined them, trees are not a special case of 
graphs:

- Our trees are oriented (there is a root which implicitly 
defines directions on the edges).

- A free tree is a connected graph with no cycles.



Alternative Definition – Rooted Tree

• A tree is a finite set T such that:

- one element r ∈ T is designated the root.

- the remaining nodes are partitioned into k ≥ 0 disjoint 
sets T1, T2, ..., Tk, each of which is a tree.

This definition emphasizes the 
partitioning aspect of trees:

As we move down the we’re 
dividing the set of elements into 
more and more parts.

Each part has a distinguished 
element (that can represent it).



Basic Properties

• Every node except the root has exactly one parent.

• A tree with n nodes has n-1 edges 
(every node except the root has an edge to its 
parent).

• There is exactly one path from the root to each node. 
(Suppose there were 2 paths, then some node along 
the 2 paths would have 2 parents.)



Binary Trees – Definition

• An ordered tree is a tree for which the order of the 
children of each node is considered important.

• A binary tree is an ordered tree such that each node 
has ≤ 2 children.

• Call these two children the left and right children.
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Example Binary Trees
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Extended Binary Trees

Replace each missing 
child with external node

Do you need a special 
flag to tell which nodes 

are external?

Every internal node has exactly 2 children.

Every leaf (external node) has exactly 0 children.

Each external node corresponds to one Λ in the original tree – 
let’s us distinguish different instances of Λ.

Extended binary treeBinary tree



# of External Nodes in Extended Binary Trees

Thm. An extended binary tree with n internal nodes has 
n+1 external nodes.

Proof. By induction on n. 
X(n) := number of external nodes in binary tree with 
n internal nodes.

Base case: X(0) = 1 = n + 1.

Induction step: Suppose theorem is true for all i < n. 
Because n ≥ 1, we have:

Extended binary tree

k nodes (for 
some 0 ≤ k < n)

n-k-1 
nodes

X(n) 
= X(k) + X(n-k-1)

 = k+1 + n-k-1 + 1

 = n + 1  ☐

Related to Thm 5.2 
in your book.



Alternative Proof

Thm. An extended binary tree with n internal nodes has n+1 external nodes.

Proof. Every node has 2 children pointers, for a total of 2n pointers.

Every node except the root has a parent, for a total of n - 1 nodes with parents.

These n - 1 parented nodes are all children, and each takes up 1 child pointer.

Thus, there are n + 1 null pointers.

Every null pointer corresponds to one external node by construction. ☐

(pointers) - (used child pointers) = (unused child pointers)
2n - (n-1) = n + 1



Full and Complete Binary Trees

• If every node has either 0 or 2 children, a binary tree is called full.

• If the lowest d-1 levels of a binary tree of height d are filled and 
level d is partially filled from left to right, the tree is called 
complete.

• If all d levels of a height-d binary tree are filled, the tree is called 
perfect.

full complete perfect



# Nodes in a Perfect Tree of Height h

Thm. A perfect tree of height h has 2h+1 - 1 nodes.

Proof. By induction on h.

Let N(h) be number of nodes in a perfect tree of height h. 

Base case: when h = 0, tree is a single node. N(0) = 1 = 20+1 - 1.

Induction step: Assume N(i) = 2i+1 - 1 for 0 ≤ i < h.  

A perfect binary tree of height h consists of 2 perfect binary trees of 
height h-1 plus the root:

N(h) 
= 2 × N(h - 1) + 1 

 = 2 × (2h-1+1 - 1) + 1

 = 2 × 2h - 2 + 1

 = 2h+1 - 1   ☐

2h are leaves
2h - 1 are internal nodes



Full Binary Tree Theorem

Thm. In a non-empty, full binary tree, the number of internal nodes is always 1 less 
than the number of leaves.

Proof. By induction on n. 
L(n) := number of leaves in a non-empty, full tree of n internal nodes.

Base case: L(0) = 1 = n + 1.

Induction step: Assume L(i) = i + 1 for i < n.

Given T with n internal nodes, remove two sibling leaves.

T’ has n-1 internal nodes, and by induction hypothesis, L(n-1) = n leaves.

Replace removed leaves to return to tree T. 
Turns a leaf into an internal node, adds two new leaves. 

Thus:  L(n) = n + 2 - 1 = n + 1.

Thm 5.1 in your book.



Array Implementation for Complete Binary Trees
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Binary Tree ADT

template <class ValType> 
class BinaryTree {
 public:

   virtual ValType & value() = 0;
   virtual void set_value(const ValType &) = 0;

   virtual BinaryTree * left() const = 0;
   virtual void set_left(BinNode *) = 0;

   virtual BinaryTree * right() const = 0;
   virtual void set_right(BinNode *) = 0;
   virtual bool is_leaf() = 0;
};
   

virtual ⇒ this function can be overridden by subclassing.
“= 0” ⇒ a pure function with no implementation. Must subclass to get 
implementation.

A tree can be represented as a linked collection of its nodes:



template <class ValType> 
class BinNode : public BinaryTree<ValType>
{
 public:
   BinNode(ValType * v); 
   ~BinNode();

   ValType & value();
   void set_value(const ValType&);

   BinNode * left() const;
   void set_left(BinNode *);

   BinNode * right() const;
   void set_right(BinNode *);
   bool is_leaf();

 private:
   ValType * _data;
   BinNode<ValType> * _left_child;
   BinNode<ValType> * _right_child;
};

Linked Binary Tree Implementation
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Binary Tree Representation
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List Representation of General Trees
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Representing General Trees with Binary Trees
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General K-ary Tree Representation as
Binary Tree

_data

_first_child _right_sibling

Each node 
represented by:

How would you implement an ordered general tree using a binary tree?


