Trees

CMSC 420: Lecture 5

Hierarchies

Many ways to represent tree-like information:

I. A

1. B

a. D

i. E

b. F

2. C

a. G

outlines,

indentations

(((E):D), F):B, (G):C):A nested, labeled parenthesis

nested sets

Definition – Rooted Tree

- Λ is a tree
- If T_1 , T_2 , ..., T_k are trees with roots r_1 , r_2 , ..., r_k and r is a node \notin any T_i , then the structure that consists of the T_i , node r, and edges (r, r_i) is also a tree.

Terminology

- r is the <u>parent</u> of its <u>children</u> r_1 , r_2 , ..., r_k .
- r_1 , r_2 , ..., r_k are <u>siblings</u>.
- <u>root</u> = distinguished node, usually drawn at top. Has no parent.
- If all children of a node are Λ , the node is a <u>leaf</u>. Otherwise, the node is a <u>internal</u> <u>node</u>.
- A *path* in the tree is a sequence of nodes u_1 , u_2 , ..., u_m such that each of the edges (u, u_{i+1}) exists.
- A node u is an <u>ancestor</u> of v if there is a path from u to v.
- A node u is a <u>descendant</u> of v if there is a path from v to u.

Height & Depth

- The *height* of node *u* is the length of the longest path from *u* to a leaf.
- The <u>depth</u> of node u is the length of the path from the root to u.
- Height of the tree = maximum depth of its nodes.
- A *level* is the set of all nodes at the same depth.

Subtrees, forests, and graphs

- A <u>subtree</u> rooted at u is the tree formed from u and all its descendants.
- A <u>forest</u> is a (possibly empty) set of trees.
 The set of subtrees rooted at the children of *r* form a forest.
- As we've defined them, trees are **not** a special case of graphs:
 - Our trees are <u>oriented</u> (there is a root which implicitly defines directions on the edges).
 - A *free tree* is a connected graph with no cycles.

Alternative Definition – Rooted Tree

- A *tree* is a finite set *T* such that:
 - **-** one element r ∈ T is designated the root.
 - the remaining nodes are partitioned into $k \ge 0$ disjoint sets $T_1, T_2, ..., T_k$, each of which is a tree.

This definition emphasizes the *partitioning* aspect of trees:

As we move down the we're dividing the set of elements into more and more parts.

Each part has a distinguished element (that can represent it).

Basic Properties

Every node except the root has exactly one parent.

• A tree with *n* nodes has *n*-1 edges (every node except the root has an edge to its parent).

 There is exactly one path from the root to each node.
 (Suppose there were 2 paths, then some node along the 2 paths would have 2 parents.)

Binary Trees – Definition

 An <u>ordered</u> tree is a tree for which the order of the children of each node is considered important.

- A <u>binary tree</u> is an ordered tree such that each node has ≤ 2 children.
- Call these two children the <u>left</u> and <u>right</u> children.

Example Binary Trees

The edge cases:

Extended Binary Trees

Binary tree

Extended binary tree

Every internal node has exactly 2 children.

Every leaf (external node) has exactly 0 children.

Each external node corresponds to one Λ in the original tree – let's us distinguish different instances of Λ .

of External Nodes in Extended Binary Trees

Thm. *An extended binary tree with* n *internal nodes has* n+1 *external nodes.*

Proof. By induction on *n*.

X(n) := number of external nodes in binary tree with n internal nodes.

Base case: X(0) = 1 = n + 1.

Induction step: Suppose theorem is true for all i < n. Because $n \ge 1$, we have:

some $0 \le k < n$)

$$X(n) = X(k) + X(n-k-1)$$

= $k+1 + n-k-1 + 1$
= $n + 1$

Extended binary tree

Related to Thm 5.2 in your book.

Alternative Proof

Thm. An extended binary tree with n internal nodes has n+1 external nodes.

Proof. Every node has 2 children pointers, for a total of 2*n* pointers.

Every node except the root has a parent, for a total of n - 1 nodes with parents.

These n - 1 parented nodes are all children, and each takes up 1 child pointer.

(pointers) - (used child pointers) = (unused child pointers)
$$2n - (n-1) = n + 1$$

Thus, there are n + 1 null pointers.

Every null pointer corresponds to one external node by construction.

Full and Complete Binary Trees

- If every node has either 0 or 2 children, a binary tree is called *full*.
- If the lowest *d-1* levels of a binary tree of height *d* are filled and level *d* is partially filled from left to right, the tree is called *complete*.
- If all *d* levels of a height-*d* binary tree are filled, the tree is called *perfect*.

Nodes in a Perfect Tree of Height h

Thm. A perfect tree of height h has 2^{h+1} - 1 nodes.

Proof. By induction on *h*.

Let N(h) be number of nodes in a perfect tree of height h.

Base case: when h = 0, tree is a single node. $N(0) = 1 = 2^{0+1} - 1$.

Induction step: Assume $N(i) = 2^{i+1} - 1$ for $0 \le i < h$.

A perfect binary tree of height h consists of 2 perfect binary trees of height *h*-1 plus the root:

$$N(h) = 2 \times N(h-1) + 1$$

$$= 2 \times (2^{h-1+1} - 1) + 1$$

$$= 2 \times 2^{h} - 2 + 1$$

$$= 2^{h+1} - 1 \square$$

 2^h are leaves 2^h - 1 are internal nodes

Full Binary Tree Theorem

Thm. *In a non-empty, full binary tree, the number of internal nodes is always* 1 *less than the number of leaves.*

Proof. By induction on n.

L(n) := number of leaves in a non-empty, full tree of n internal nodes.

Base case: L(0) = 1 = n + 1.

Induction step: Assume L(i) = i + 1 for i < n.

Given T with n internal nodes, remove two sibling leaves.

T' has n-1 internal nodes, and by induction hypothesis, L(n-1) = n leaves.

Replace removed leaves to return to tree T.

Turns a leaf into an internal node, adds two new leaves.

Thus: L(n) = n + 2 - 1 = n + 1.

Array Implementation for Complete Binary Trees

left(i): 2i if $2i \le n$ otherwise 0

right(i): (2i + 1) if $2i + 1 \le n$ otherwise 0

parent(i): $\lfloor i/2 \rfloor$ if $i \ge 2$ otherwise 0

Binary Tree ADT

A tree can be represented as a linked collection of its nodes:

```
template <class ValType>
class BinaryTree {
  public:

    virtual ValType & value() = 0;
    virtual void set_value(const ValType &) = 0;

    virtual BinaryTree * left() const = 0;
    virtual void set_left(BinNode *) = 0;

    virtual BinaryTree * right() const = 0;
    virtual binaryTree * right() const = 0;
    virtual void set_right(BinNode *) = 0;
    virtual bool is_leaf() = 0;
};
```

virtual \Rightarrow this function can be overridden by subclassing. "= 0" \Rightarrow a *pure* function with no implementation. Must subclass to get implementation.

Linked Binary Tree Implementation

```
template <class ValType>
class BinNode : public BinaryTree<ValType>
public:
   BinNode(ValType * v);
   ~BinNode();
   ValType & value();
   void set value(const ValType&);
   BinNode * left() const;
   void set left(BinNode *);
   BinNode * right() const;
   void set right(BinNode *);
   bool is leaf();
private:
   ValType * data;
   BinNode<ValType> * left child;
   BinNode<ValType> * right_child;
};
```

__data
__left_child __right_child

Binary Tree Representation

List Representation of General Trees

Representing General Trees with Binary Trees

General K-ary Tree

Representation as Binary Tree

Each node represented by:

_data	
_first_child	_right_sibling

How would you implement an *ordered* general tree using a binary tree?