
Trees
CMSC 420: Lecture 5

Hierarchies

Many ways to represent tree-like information:

A

B C

D F

E

G

I. A
 1. B
 a. D
 i. E
 b. F
 2. C
 a. G A

CG

E D

F
B

(((E):D), F):B, (G):C):A
nested, labeled parenthesis nested sets

outlines,
indentations

linked hierarchy

Definition – Rooted Tree

• Λ is a tree

• If T1, T2, ..., Tk are trees with roots r1, r2, ..., rk and r is
a node ∉ any Ti, then the structure that consists of
the Ti, node r, and edges (r, ri) is also a tree.

r1

r2

r3

r4 r1 r2 r3 r4

r

T1

T2

T3
T4

Terminology

• r is the parent of its children r1, r2, ..., rk.

• r1, r2, ..., rk are siblings.

• root = distinguished node, usually drawn
at top. Has no parent.

• If all children of a node are Λ, the node is
a leaf. Otherwise, the node is a internal
node.

• A path in the tree is a sequence of nodes
u1, u2, ..., um such that each of the edges
(u, ui+1) exists.

• A node u is an ancestor of v if there is a
path from u to v.

• A node u is a descendant of v if there is a
path from v to u.

root

leaves

u

children of u
(they are siblings)

internal
node

w

parent
of w

path from
root to w

Height & Depth

• The height of node u is the length of the longest path from u to a leaf.

• The depth of node u is the length of the path from the root to u.

• Height of the tree = maximum depth of its nodes.

• A level is the set of all nodes at the same depth.

Depth = 0

Depth = 1

Depth = 2

Depth = 3

 1

 0 0 0

 0 0 0

 1

 2

 3 Numbers in
nodes give
heights

Subtrees, forests, and graphs

• A subtree rooted at u is the tree formed from u and all
its descendants.

• A forest is a (possibly empty) set of trees.
The set of subtrees rooted at the children of r form a
forest.

• As we’ve defined them, trees are not a special case of
graphs:

- Our trees are oriented (there is a root which implicitly
defines directions on the edges).

- A free tree is a connected graph with no cycles.

Alternative Definition – Rooted Tree

• A tree is a finite set T such that:

- one element r ∈ T is designated the root.

- the remaining nodes are partitioned into k ≥ 0 disjoint
sets T1, T2, ..., Tk, each of which is a tree.

This definition emphasizes the
partitioning aspect of trees:

As we move down the we’re
dividing the set of elements into
more and more parts.

Each part has a distinguished
element (that can represent it).

Basic Properties

• Every node except the root has exactly one parent.

• A tree with n nodes has n-1 edges
(every node except the root has an edge to its
parent).

• There is exactly one path from the root to each node.
(Suppose there were 2 paths, then some node along
the 2 paths would have 2 parents.)

Binary Trees – Definition

• An ordered tree is a tree for which the order of the
children of each node is considered important.

• A binary tree is an ordered tree such that each node
has ≤ 2 children.

• Call these two children the left and right children.

r1 r2 r3 r4

r

r1 r2r3r4

r

≠

Example Binary Trees

Only left
child

Only right
child

Single
node

Empty
Binary

Tree

Λ

Small binary tree:

The edge cases:

Extended Binary Trees

Replace each missing
child with external node

Do you need a special
flag to tell which nodes

are external?

Every internal node has exactly 2 children.

Every leaf (external node) has exactly 0 children.

Each external node corresponds to one Λ in the original tree –
let’s us distinguish different instances of Λ.

Extended binary treeBinary tree

of External Nodes in Extended Binary Trees

Thm. An extended binary tree with n internal nodes has
n+1 external nodes.

Proof. By induction on n.
X(n) := number of external nodes in binary tree with
n internal nodes.

Base case: X(0) = 1 = n + 1.

Induction step: Suppose theorem is true for all i < n.
Because n ≥ 1, we have:

Extended binary tree

k nodes (for
some 0 ≤ k < n)

n-k-1
nodes

X(n)
= X(k) + X(n-k-1)

 = k+1 + n-k-1 + 1

 = n + 1 ☐

Related to Thm 5.2
in your book.

Alternative Proof

Thm. An extended binary tree with n internal nodes has n+1 external nodes.

Proof. Every node has 2 children pointers, for a total of 2n pointers.

Every node except the root has a parent, for a total of n - 1 nodes with parents.

These n - 1 parented nodes are all children, and each takes up 1 child pointer.

Thus, there are n + 1 null pointers.

Every null pointer corresponds to one external node by construction. ☐

(pointers) - (used child pointers) = (unused child pointers)
2n - (n-1) = n + 1

Full and Complete Binary Trees

• If every node has either 0 or 2 children, a binary tree is called full.

• If the lowest d-1 levels of a binary tree of height d are filled and
level d is partially filled from left to right, the tree is called
complete.

• If all d levels of a height-d binary tree are filled, the tree is called
perfect.

full complete perfect

Nodes in a Perfect Tree of Height h

Thm. A perfect tree of height h has 2h+1 - 1 nodes.

Proof. By induction on h.

Let N(h) be number of nodes in a perfect tree of height h.

Base case: when h = 0, tree is a single node. N(0) = 1 = 20+1 - 1.

Induction step: Assume N(i) = 2i+1 - 1 for 0 ≤ i < h.

A perfect binary tree of height h consists of 2 perfect binary trees of
height h-1 plus the root:

N(h)
= 2 × N(h - 1) + 1

 = 2 × (2h-1+1 - 1) + 1

 = 2 × 2h - 2 + 1

 = 2h+1 - 1 ☐

2h are leaves
2h - 1 are internal nodes

Full Binary Tree Theorem

Thm. In a non-empty, full binary tree, the number of internal nodes is always 1 less
than the number of leaves.

Proof. By induction on n.
L(n) := number of leaves in a non-empty, full tree of n internal nodes.

Base case: L(0) = 1 = n + 1.

Induction step: Assume L(i) = i + 1 for i < n.

Given T with n internal nodes, remove two sibling leaves.

T’ has n-1 internal nodes, and by induction hypothesis, L(n-1) = n leaves.

Replace removed leaves to return to tree T.
Turns a leaf into an internal node, adds two new leaves.

Thus: L(n) = n + 2 - 1 = n + 1.

Thm 5.1 in your book.

Array Implementation for Complete Binary Trees

A B C D E F G H I J K L M
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

H I J K L M

D E F

B

G

C

A

left(i): 2i if 2i ≤ n otherwise 0
right(i): (2i + 1) if 2i + 1 ≤ n otherwise 0
parent(i): i/2 if i ≥ 2 otherwise 0

Mapping
of nodes to
integers

1
2 3

4

Binary Tree ADT

template <class ValType>
class BinaryTree {
 public:

 virtual ValType & value() = 0;
 virtual void set_value(const ValType &) = 0;

 virtual BinaryTree * left() const = 0;
 virtual void set_left(BinNode *) = 0;

 virtual BinaryTree * right() const = 0;
 virtual void set_right(BinNode *) = 0;
 virtual bool is_leaf() = 0;
};

virtual ⇒ this function can be overridden by subclassing.
“= 0” ⇒ a pure function with no implementation. Must subclass to get
implementation.

A tree can be represented as a linked collection of its nodes:

template <class ValType>
class BinNode : public BinaryTree<ValType>
{
 public:
 BinNode(ValType * v);
 ~BinNode();

 ValType & value();
 void set_value(const ValType&);

 BinNode * left() const;
 void set_left(BinNode *);

 BinNode * right() const;
 void set_right(BinNode *);
 bool is_leaf();

 private:
 ValType * _data;
 BinNode<ValType> * _left_child;
 BinNode<ValType> * _right_child;
};

Linked Binary Tree Implementation

_data

_left_child _right_child

Binary Tree Representation

_data

_left_child _right_child

_data

_left_child _right_child

_data

_left_child _right_child

_data

_left_child _right_child

_data

_left_child _right_child

0 0 0 0

0 0

List Representation of General Trees

A

children

B

children

C

children

D

children

Child next Child next Child 0

Child next Child next

Child 0

Child 0

Child 0

A

B C D

Representing General Trees with Binary Trees

E G

D

E

B

A

H

C

F E

B

A

H

C

G

D

E F

General K-ary Tree Representation as
Binary Tree

_data

_first_child _right_sibling

Each node
represented by:

How would you implement an ordered general tree using a binary tree?

