
More Applications of
Suffix Trees

02-714
Slides by Carl Kingsford

Following Gusfield

All Pairs Suffix-Prefix Matches

Problem. Given a set of strings S = {s1,...,sk} of total length m, find all
of the longest suffix-prefix exact matches.

||||||||||||||
si

sj

• Can represent these matches by integers.

✓
k

2

◆

Notation & Main Idea

Generalized
suffix tree for

strings S:

ST(S):

sj

P(v)

P(v) := path from root to v.

Def. L(v) := list of strings (indices) from S such that P(v) is a complete suffix.

v

each node on this path represents a prefix of sj

If L(v) on P(sj) contains i then P(v) is a suffix of si.

deepest node v on P(sj) s.t. L(v) contains i
gives the longest prefix of sj that matches
a suffix of si.

⇒

Algorithm: find these deepest nodes for all si at once with a single
traversal of the tree.

Algorithm

1. Do a DFS on the generalized suffix tree

2. Maintain k stacks during the DFS that you update as follows:

s1 s2 s3 sk...

When entering node v, push v onto all stacks in L(v).

When backtracking out of v, pop all stacks in L(v).
each stack i will
therefore contain the
deepest node with i
∈ L(v) on the current
DFS path from the
root.

3. When you reach a node corresponding to a full string, output the depth of the
nodes at the top of each stack.

Runtime

Thm. Runtime of the preceding algorithm is O(m + k2)

Proof. Building the generalized suffix tree takes O(m) time.

The L(v) sets can be saved as you are building the suffix tree
(when you add in a suffix for i, add it to L(v)).

There are O(m) indices in the union of the L(v) lists, so the
total pop/push events take O(m).

There are k nodes at which you will output, and each output
takes O(k) time, leading to O(k2) time for output.

Ziv-Lempel Compression
Let S be a string of length m that we want to compress.

Notation.
b(i) := the longest string in S[1...i-1] that matches a prefix of S[i...m]
e(i) := |b(i)|
p(i) := the position of b(i) in S[1...i-1]

S

i

e(i)

p(i)

e(i)

b(i)b(i)

1. walk down string from left to right.

2. when at position i, output (p(i), e(i)) instead of S[i...i+e(i)-1]

3. skip ahead to i := i + e(i)

Algorithm:

Computing p(i), e(i)

S[i...m]

Build suffix tree on S, and at every node v, store:

c(v) := minimum suffix # in the subtree rooted at v

Path L(i) that
represents suffix

S[i...m]
Every node v on
L(i) corresponds to
a prefix of S[i...m].

Consider the set

V = {v ∈ L(i) : c(v) + depth(v) < i}

Every v ∈ V matches a
prefix of S[i...m] and is
contained in S[1...i-1]
(because c(v) < i)

The deepest such node
represents b(i).

c(v) i

depth(v)

Running time

• O(m) to built the suffix tree

• O(m) time (bottom up traversal) to compute c(v)

• O(e(i)) to search at position i, but each time you spend O(e(i))
time, you skip e(i) letters ⇒ O(m) total time.

1. To compute p(i): walk down path spelling out S[i...m]

2. Stop when c(v) + depth(v) = i.

3. p(i) = c(v)

4. e(i) = depth(v)

Algorithm for p(i), e(i):

Total running time to compress a string of length m:

