More Applications of Suffix Trees

02-714
Slides by Carl Kingsford

Following Gusfield
All Pairs Suffix-Prefix Matches

Problem. Given a set of strings $S = \{s_1, \ldots, s_k\}$ of total length m, find all of the longest suffix-prefix exact matches.

- Can represent these matches by $\binom{k}{2}$ integers.
Notation & Main Idea

Def. $L(v) := \text{list of strings (indices) from } S \text{ such that } P(v) \text{ is a complete suffix.}$

Generalized suffix tree for strings S:

- $P(v) := \text{path from root to } v.$
 - each node on this path represents a prefix of s_j
 - If $L(v)$ on $P(s_j)$ contains i then $P(v)$ is a suffix of s_i.
 - \Rightarrow deepest node v on $P(s_j)$ s.t. $L(v)$ contains i gives the longest prefix of s_j that matches a suffix of s_i.

Algorithm: find these deepest nodes for all s_i at once with a single traversal of the tree.
1. Do a DFS on the generalized suffix tree
2. Maintain k stacks during the DFS that you update as follows:

When entering node v, push v onto all stacks in $L(v)$.
When backtracking out of v, pop all stacks in $L(v)$.

3. When you reach a node corresponding to a full string, output the depth of the nodes at the top of each stack.
Runtime

Thm. Runtime of the preceding algorithm is $O(m + k^2)$

Proof. Building the generalized suffix tree takes $O(m)$ time.

The $L(v)$ sets can be saved as you are building the suffix tree (when you add in a suffix for i, add it to $L(v)$).

There are $O(m)$ indices in the union of the $L(v)$ lists, so the total pop/push events take $O(m)$.

There are k nodes at which you will output, and each output takes $O(k)$ time, leading to $O(k^2)$ time for output.
Ziv-Lempel Compression

Let S be a string of length m that we want to compress.

Notation.

- $b(i) :=$ the longest string in $S[1...i-1]$ that matches a prefix of $S[i...m]$
- $e(i) := |b(i)|$
- $p(i) :=$ the position of $b(i)$ in $S[1...i-1]$

Algorithm:

1. walk down string from left to right.
2. when at position i, output $(p(i), e(i))$ instead of $S[i...i+e(i)-1]$
3. skip ahead to $i := i + e(i)$
Computing \(p(i), e(i) \)

Build suffix tree on \(S \), and at every node \(v \), store:

\[c(v) := \text{minimum suffix } \# \text{ in the subtree rooted at } v \]

Consider the set

\[V = \{ v \in L(i) : c(v) + \text{depth}(v) < i \} \]

Every \(v \in V \) matches a prefix of \(S[i...m] \) and is contained in \(S[1...i-1] \) (because \(c(v) < i \))

The deepest such node represents \(b(i) \).
Running time

Algorithm for $p(i)$, $e(i)$:

1. To compute $p(i)$: walk down path spelling out $S[i...m]$
2. Stop when $c(v) + \text{depth}(v) = i$.
3. $p(i) = c(v)$
4. $e(i) = \text{depth}(v)$

Total running time to compress a string of length m:

- $O(m)$ to built the suffix tree
- $O(m)$ time (bottom up traversal) to compute $c(v)$
- $O(e(i))$ to search at position i, but each time you spend $O(e(i))$ time, you skip $e(i)$ letters $\Rightarrow O(m)$ total time.