Suffix Arrays

CMSC 8585

Suffix Arrays

Even though Suffix Trees are O(n) space, the constant hidden by the
big-Oh notation is somewhat “big”: = 20 bytes / character in good
implementations.

If you have a 10Gb genome, 20 bytes / character = 200Gb to store
your suffix tree.“Linear” but large.

Suffix arrays are a more efficient way to store the suffixes that can do
most of what suffix trees can do, but just a bit slower.

Slight space vs. time tradeoff.

Example Suffix Array

* ldea:lexicographically sort
all the suffixes.

>~ attcatg$ e Store the starting indices of
the suffixes in an array.
| |attcatg$ 8|$
2|ttcatg$ 5|atg$
3|tcatg$ " iphabercaly | lattcatg$
4|catg$ > 4|catg$
Slatg$ the indices just /g%
6(tg$d come along for 3|tcatg$
/|g$ 6tg$
8% 2|ttcatg$

index of suffix

suffix of s

Example Suffix Array

s = attcatg$

ONONUVT A WDN —

attcatgd
ttcatg$

index of suffix

suffix of s

sort the suffixes
alphabetically

>

the indices just
“come along for
the ride”

|dea: lexicographically sort
all the suffixes.

Store the starting indices of
the suffixes in an array.

NONWd DS~ — 010

Another Example Suffix Array

* ldea:lexicographically sort
all the suffixes.

>~ Cattcat$ e Store the starting indices of
the suffixes in an array.
| |cattcat$ 8|$
2|attcat$ 6|at$
Btecath | e | 2lacccar§
4|tcat$ > S|cat$
5 Cat$ the indices just | Cattcat$
6/at$ Cherae | 7|t$
7(t$ 4|tcat$
8% 3|ttcat$

index of suffix

suffix of s

Another Example Suffix Array

s = cattcat$d

ONONUVT A WDN —

cattcat$
attcat$
ttcat$
tcat$
cat$

at$
td
$

index of suffix

suffix of s

sort the suffixes
alphabetically

>

the indices just
“come along for
the ride”

|dea: lexicographically sort
all the suffixes.

Store the starting indices of
the suffixes in an array.

WAd—0OUI DN O OO

Search via Suffix Arrays

s = cattcat$

«— \/ * Does string “at” occur in s?

Binary search to find “at”.

e What about “tt”’?

WAhAJ— 01PN OO

Counting via Suffix Arrays

s = cattcat$

e How many times does “at”
occur in the string?

e All the suffixes that start with
“at” will be next to each other
in the array.

* Find one suffix that starts with
“at” (using binary search).

* Then count the neighboring
sequences that start with at.

WhAhd— U1 DN OO

K-mer counting

Problem: Given a string s, an integer k, output all pairs (b, i) such
that b is a length-k substring of s that occurs exactly i times.

k =2

CurrentCount

Wh~Jd— 01PN OO0

|. Build a suffix array.

2.Walk down the suffix array, keeping a
CurrentCount count
If the current suffix has length <k, skip it

If the current suffix starts with the same
length-k string as the previous suffix:
increment CurrentCount
else
output CurrentCount and previous
length-k suffix
CurrentCount := |

Output CurrentCount & length-k suffix.

Constructing Suffix Arrays

Easy O(n? log n) algorithm:

sort the n suffixes, which takes O(n log n) comparisons,
where each comparison takes O(n).

There are several direct O(n) algorithms for constructing suffix
arrays that use very little space.

The Skew Algorithm is one that is based on divide-and-conquer.

An simple O(n) algorithm: build the suffix tree, and exploit the
relationship between suffix trees and suffix arrays (next slide)

Relationship Between
Suffix Trees & Suffix Arrays

> ={$,a,c,t}

s = cattcat$
12345678 t
$

Red #s = starting position of the
suffix ending at that leaf
Leaf labels left to right: 86251743
Edges leaving each node are
sorted by label (left-to-right).

Relationship Between
Suffix Trees & Suffix Arrays

> ={$,a,c,t}

s = cattcat$
12345678 t
$

s = cattcat$d
at t \%
8 O/ - tcat$ $

Lk e 8
N 6|at$
5 St g tcats é 6 ° 2|attcat$
4
6 e O 5|cat$
> | |cattcat$
/ 7/t$

Red #s = starting position of the
suffix ending at ti:t leaf 4 tcat$

Leaf labels left to right: 86251743 3 ttcat$

Edges leaving each node are
sorted by label (left-to-right).

The Skew Algorithm

Karkkainen & Sanders, 2003

¢ Main idea: Divide suffixes into 3 groups:

e Those starting at
* Those starting at
e Those starting at

bositions i=0,3,6,9,.... (i mod
vositions 1,4,7,10,... (i moc

bositions 2,5,8,1 1,... (i moc

with a special character.

M1SS1SsS1pplsSs

Basic Outline:

3 = 0)
3= 1)
3 =2)

For simplicity, assume text length is a multiple of 3 after padding

Recursively handle suffixes from the i mod 3 = | and i mod 3 =2

groups.

e Merge the i mod 3 = 0 group at the end.

Handing the | and 2 groups

S = M1SS1SS1PPisSS
: : : ' $S : . . triples for groups
1SS |1SS|1pPpPp|1 SS1|SS1|ppl | and 2 groups
= C C B A E = D assign each triple
a token in
lexicographical
AEED 4 recursively compute order
BA 3 the suffix array for
CBA 9 tokenized string
CCBA I
D7 Every suffix of t corresponds
ED 6 4321765 to a suffix of s.
EED 5

Relationship Between T and s

S = MississipplS$$ t = CCBAEED
1ss|lss|ipp|i$S|ssi|ssi|ppl 4
C C B A E F D 4321765

Key Point #1: The order of the suffixes of t is the same as the order of the
group | & 2 suffixes of s.

Why?

Every suffix of t corresponds to some suffix of s (perhaps with some extra
letters at the end of it --- in this case EED)

Because the tokens are sorted in the same order as the triples, the sort
order of the suffix of t matches that of s.

So:The recursive computational of the suffix array for t gives you the ordering
of the group | and group 2 suffixes.

Radix Sort

e O(n)-time sort for n items when items can be divided into
constant # of digits.

 Put into buckets based on least-significant digit, flatten, repeat
with next-most significant digit, etc.

e Example items: 100 123 042 333 777 892 236

100 042 123 236 777
892 333

0 1 2 3 4 5 6 7 3

e # of passes = # of digits

* Each pass goes through the numbers once.

Handling O Suffixes

* First: sort the group 0 suffixes, using the representation (s[i], Si+1)

* Since the S+ suffixes are already in the array sorted, we can just stably
sort them with respect to s[i], again using radix sort.

|,2-array: |ipp|iss|iss|i$$S|ppl|ssi|ssi

O-array: mis|pi$|sip|sis

* We have to merge the group 0 suffixes into the suffix array for group | and 2.
* Given suffix $; and $;, need to decide which should come first.

e If Siand §; are both either group | or group 2, then the recursively
computed suffix array gives the order.

e |[foneofiorjis0 (mod 3),see next slide.

Comparing 0 suffix §; with | or 2 suffix §;

Represent S and §; using subsequent suffixes:

[(mod 3) = 1: I (mod 3) = 2:
(s[1.5+1) < (s[1.S+1) (s[i].s[i+11,5+2) < (s s[i*11.S+2)
T T T T
= 2 (mod 3) = [(mod 3) = | (mod 3) = 2 (mod 3)

= the suffixes can be compared quickly because the relative order

of Si+1, Sj+1 or Si+2, Sj+2 is known from the |,2-array we already
computed.

Running Time

T(n) = O(n) +T(2n/3)

time to sort and array in recursive calls
merge is 2/3rds the size of

starting array

Solves to T(n) = O(n):

Expand big-O notation: T(n) < cn + T(2n/3) for some c.
Guess: T(n) < 3cn
Induction step: assume that is true for all i < n.

T(n) < cn+ 3c(2n/3) =cn + 2cn = 3cn O

Recap

e Suffix arrays can be used to search and count substrings.

e Construction:
e Easily constructed in O(n? log n)
e Simple algorithms to construct them in O(n) time.

* More complicated algorithms to construct them in O(n) time
using even less space.

* More space efficient than suffix trees: just storing the original
string + a list of integers.

