Suffix Arrays

CMSC 858S

Suffix Arrays

- Even though Suffix Trees are $O(n)$ space, the constant hidden by the big-Oh notation is somewhat "big": ≈ 20 bytes / character in good implementations.
- If you have a 10 Gb genome, 20 bytes / character $=200 \mathrm{~Gb}$ to store your suffix tree. "Linear" but large.
- Suffix arrays are a more efficient way to store the suffixes that can do most of what suffix trees can do, but just a bit slower.
- Slight space vs. time tradeoff.

Example Suffix Array

$\mathrm{s}=\mathrm{attcatg} \$$

- Idea: lexicographically sort all the suffixes.
- Store the starting indices of the suffixes in an array.

Example Suffix Array

$\mathrm{s}=\mathrm{attcatg} \$$

- Idea: lexicographically sort all the suffixes.
- Store the starting indices of the suffixes in an array.

\| attcatg\$	
2 ttcatg\$	
3 tcatg\$	sort the suffixes alphabetically
4 catg\$	$\xrightarrow{ }$
5 atg\$	the indices just
$6 \operatorname{tg} \$$	"come along for the ride"
7 g \$	
8 \$	

Another Example Suffix Array

```
s = cattcat$
```

- Idea: lexicographically sort all the suffixes.
- Store the starting indices of the suffixes in an array.

8	$\$$
6	at\$
2	attcat $\$$
5	cat\$
1	cattcat $\$$
7	t\$
4	tcat\$
3	ttcat $\$$

Another Example Suffix Array

s = cattcat\$

- Idea: lexicographically sort all the suffixes.
- Store the starting indices of the suffixes in an array.

Search via Suffix Arrays

s = cattcat\$

- Does string "at" occur in s?
- Binary search to find "at".
- What about "tt"?

Counting via Suffix Arrays

s = cattcat\$

- How many times does "at" occur in the string?
- All the suffixes that start with "at" will be next to each other in the array.
- Find one suffix that starts with "at" (using binary search).
- Then count the neighboring sequences that start with at.

K-mer counting

Problem: Given a string s, an integer k, output all pairs (b, i) such that b is a length- k substring of s that occurs exactly i times.
$\mathrm{k}=2$

I. Build a suffix array.
2. Walk down the suffix array, keeping a CurrentCount count

If the current suffix has length $<k$, skip it
If the current suffix starts with the same length-k string as the previous suffix: increment CurrentCount
else
output CurrentCount and previous
length-k suffix
CurrentCount:= I
Output CurrentCount \& length-k suffix.

Constructing Suffix Arrays

- Easy $O\left(n^{2} \log n\right)$ algorithm: sort the n suffixes, which takes $O(n \log n$) comparisons, where each comparison takes $O(n)$.
- There are several direct $O(n)$ algorithms for constructing suffix arrays that use very little space.
- The Skew Algorithm is one that is based on divide-and-conquer.
- An simple $O(n)$ algorithm: build the suffix tree, and exploit the relationship between suffix trees and suffix arrays (next slide)

Relationship Between

Suffix Trees \& Suffix Arrays

$\Sigma=\{\$, \mathrm{a}, \mathrm{c}, \mathrm{t}\}$
$\mathrm{s}=$ cattcat $\$$
12345678

Red \#s = starting position of the suffix ending at that leaf

Leaf labels left to right: 86251743
Edges leaving each node are sorted by label (left-to-right).

Relationship Between

Suffix Trees \& Suffix Arrays

$\Sigma=\{\$, \mathrm{a}, \mathrm{c}, \mathrm{t}\}$
$\mathrm{s}=$ cattcat $\$$ 12345678

Red \#s = starting position of the suffix ending at that leaf

Leaf labels left to right: 86251743
Edges leaving each node are
s = cattcat\$

8	$\$$
6	at\$
2	attcat\$
5	cat\$
1	cattcat\$
7	t\$
4	ttat\$
3	ttcat\$

The Skew Algorithm

Kärkkäinen \& Sanders, 2003

- Main idea: Divide suffixes into $\mathbf{3}$ groups:
- Those starting at positions $i=0,3,6,9, \ldots .(i \bmod 3=0)$
- Those starting at positions $1,4,7,10, \ldots \quad(i \bmod 3=1)$
- Those starting at positions $2,5,8,1 \mathrm{I}, \ldots \quad(\mathrm{i} \bmod 3=2)$
- For simplicity, assume text length is a multiple of 3 after padding with a special character.

mississippi\$\$

Basic Outline:

- Recursively handle suffixes from the $\mathrm{i} \bmod 3=\mid$ and $\mathrm{i} \bmod 3=2$ groups.
- Merge the $i \bmod 3=0$ group at the end.

Handing the I and 2 groups

s = mississippi\$\$

$$
t=\begin{array}{lllllll}
\mathrm{C} & \mathrm{C} & \mathrm{~B} & \mathrm{~A} & \mathrm{E} & \mathrm{E} & \mathrm{D}
\end{array}
$$

recursively compute the suffix array for tokenized string
triples for groups
I and 2 groups
assign each triple a token in
lexicographical order

$$
4321765
$$

Every suffix of t corresponds to a suffix of s.

Relationship Between \dagger and s

$=$ mississippi\$\$					
iss iss ipp i\$\$ ssi ssi ppi C C B A E E D					

$t=C C B A E E D$
t_{4}
4321765

Key Point \#I:The order of the suffixes of t is the same as the order of the group I \& 2 suffixes of s.

Why?
Every suffix of t corresponds to some suffix of s (perhaps with some extra letters at the end of it --- in this case EED)

Because the tokens are sorted in the same order as the triples, the sort order of the suffix of t matches that of s.

So:The recursive computational of the suffix array for t gives you the ordering of the group 1 and group 2 suffixes.

Radix Sort

- $\mathrm{O}(\mathrm{n})$-time sort for n items when items can be divided into constant \# of digits.
- Put into buckets based on least-significant digit, flatten, repeat with next-most significant digit, etc.
- Example items: I00 I23 042333777892236

- \# of passes = \# of digits
- Each pass goes through the numbers once.

Handling 0 Suffixes

- First: sort the group 0 suffixes, using the representation (s[i], S_{i+1})
- Since the S_{i+1} suffixes are already in the array sorted, we can just stably sort them with respect to $s[i]$, again using radix sort.

I,2-array: ipp \mid iss \mid iss \mid i\$ $\$ \mid$ ppi \mid ssi \mid ssi

0-array: mis pi\$sipsis

- We have to merge the group 0 suffixes into the suffix array for group I and 2 .
- Given suffix S_{i} and S_{j}, need to decide which should come first.
- If S_{i} and S_{j} are both either group I or group 2 , then the recursively computed suffix array gives the order.
- If one of i or j is $0(\bmod 3)$, see next slide.

Comparing 0 suffix S_{j} with I or 2 suffix S_{i}

Represent S_{i} and S_{j} using subsequent suffixes:

$\underline{i}(\bmod 3)=1:$

$i(\bmod 3)=2:$

$\left(s[i], S_{i+1}\right)$
$\uparrow \stackrel{?}{<}\left(s[j], S_{j+1}\right)$
$\equiv 2(\bmod 3) \quad \equiv 1(\bmod 3)$
\Rightarrow the suffixes can be compared quickly because the relative order of S_{i+1}, S_{j+1} or S_{i+2}, S_{j+2} is known from the I,2-array we already computed.

Running Time

Solves to $T(n)=O(n)$:

- Expand big-O notation: $\mathrm{T}(n) \leq \mathrm{cn}+\mathrm{T}(2 n / 3)$ for some c .
- Guess:T(n) $\leq 3 c n$
- Induction step: assume that is true for all $i<n$.
- $\mathrm{T}(\mathrm{n}) \leq \mathrm{cn}+3 \mathrm{c}(2 \mathrm{n} / 3)=\mathrm{cn}+2 \mathrm{cn}=3 \mathrm{cn}$

Recap

- Suffix arrays can be used to search and count substrings.
- Construction:
- Easily constructed in $\mathrm{O}\left(\mathrm{n}^{2} \log \mathrm{n}\right)$
- Simple algorithms to construct them in $O(n)$ time.
- More complicated algorithms to construct them in $\mathrm{O}(\mathrm{n})$ time using even less space.
- More space efficient than suffix trees: just storing the original string +a list of integers.

