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Suffix Arrays

• Even though Suffix Trees are O(n) space, the constant hidden by the 
big-Oh notation is somewhat “big”: ≈ 20 bytes / character in good 
implementations.

• If you have a 10Gb genome, 20 bytes / character = 200Gb to store 
your suffix tree. “Linear” but large.

• Suffix arrays are a more efficient way to store the suffixes that can do 
most of what suffix trees can do, but just a bit slower.

• Slight space vs. time tradeoff.



Example Suffix Array
• Idea: lexicographically sort 

all the suffixes.

• Store the starting indices of 
the suffixes in an array.
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the ride”
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Another Example Suffix Array
• Idea: lexicographically sort 

all the suffixes.

• Store the starting indices of 
the suffixes in an array.
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Search via Suffix Arrays

• Does string “at” occur in s?

• Binary search to find “at”.

• What about “tt”?

s = cattcat$
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Counting via Suffix Arrays

• How many times does “at” 
occur in the string?

• All the suffixes that start with 
“at” will be next to each other 
in the array.

• Find one suffix that starts with 
“at” (using binary search).

• Then count the neighboring 
sequences that start with at.

s = cattcat$
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K-mer counting
Problem: Given a string s, an integer k, output all pairs (b, i) such 
that b is a length-k substring of s that occurs exactly i times. 

1. Build a suffix array.

2. Walk down the suffix array, keeping a 
CurrentCount count

If the current suffix has length < k, skip it

If the current suffix starts with the same 
length-k string as the previous suffix:

increment CurrentCount
else

output CurrentCount and previous 
length-k suffix 
CurrentCount := 1

Output CurrentCount & length-k suffix.
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k = 2
CurrentCount

1
1
2   
1    (at,2)
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1    (ca,2)
1    (t$,1)
1    (tc,1)
1    (tt,1)



Constructing Suffix Arrays

• Easy O(n2 log n) algorithm: 

sort the n suffixes, which takes O(n log n) comparisons, 
where each comparison takes O(n).

• There are several direct O(n) algorithms for constructing suffix 
arrays that use very little space.

•  The Skew Algorithm is one that is based on divide-and-conquer.

• An simple O(n) algorithm: build the suffix tree, and exploit the 
relationship between suffix trees and suffix arrays (next slide)



Relationship Between 
Suffix Trees & Suffix Arrays

Red #s = starting position of the 
suffix ending at that leaf

Edges leaving each node are 
sorted by label (left-to-right).

$

∑ = {$,a,c,t}

at cat

t
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s = 
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Leaf labels left to right: 86251743
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The Skew Algorithm 
Kärkkäinen & Sanders, 2003

• Main idea: Divide suffixes into 3 groups:

• Those starting at positions i=0,3,6,9,....  (i mod 3 = 0)
• Those starting at positions 1,4,7,10,...    (i mod 3 = 1)
• Those starting at positions 2,5,8,11,...    (i mod 3 = 2)

• For simplicity, assume text length is a multiple of 3 after padding 
with a special character.

mississippi$$

. . .
Basic Outline: 

• Recursively handle suffixes from the i mod 3 = 1 and i mod 3 = 2 
groups.

• Merge the i mod 3 = 0 group at the end.



Handing the 1 and 2 groups

s = mississippi$$

ississ ipp i$$ ssi ssi ppi

ABCC DE E

AEED 4
BAEED 3

CBAEED 2
CCBAEED 1

D 7
ED 6

EED 5

4321765

recursively compute 
the suffix array for 
tokenized string

triples for groups 
1 and 2 groups

assign each triple 
a token in 

lexicographical 
order

Every suffix of t corresponds 
to a suffix of s.

t =



Relationship Between t and s

s = mississippi$$
ississ ipp i$$ ssi ssi ppi

ABCC DE E

t = CCBAEED

t4

}

Key Point #1: The order of the suffixes of t is the same as the order of the 
group 1 & 2 suffixes of s.

Why?

Every suffix of t corresponds to some suffix of s (perhaps with some extra 
letters at the end of it --- in this case EED)

Because the tokens are sorted in the same order as the triples, the sort 
order of the suffix of t matches that of s.

So: The recursive computational of the suffix array for t gives you the ordering 
of the group 1 and group 2 suffixes.

4321765



Radix Sort

• O(n)-time sort for n items when items can be divided into 
constant # of digits.

• Put into buckets based on least-significant digit, flatten, repeat 
with next-most significant digit, etc.

• Example items: 100 123 042 333 777 892 236

1 2 3 4 5 6 7 8 90

100 123042
333

777
892

236

• # of passes = # of digits

• Each pass goes through the numbers once.



Handling 0 Suffixes
• First: sort the group 0 suffixes, using the representation (s[i], Si+1)

• Since the Si+1 suffixes are already in the array sorted, we can just stably 
sort them with respect to s[i], again using radix sort.

ississipp i$$ ssi ssippi

• We have to merge the group 0 suffixes into the suffix array for group 1 and 2.

• Given suffix Si and Sj, need to decide which should come first.

• If Si and Sj are both either group 1 or group 2, then the recursively 
computed suffix array gives the order.

• If one of i or j is 0 (mod 3), see next slide. 

mis sissippi$

1,2-array:

0-array:



Comparing 0 suffix Sj with 1 or 2 suffix Si

(s[i],Si+1) (s[j],Sj+1)<
?

i (mod 3) = 1: 

(s[i],s[i+1],Si+2) (s[j],s[j+1],Sj+2)<
?

i (mod 3) = 2: 

≣ 2 (mod 3) ≣ 1 (mod 3) ≣ 1 (mod 3) ≣ 2 (mod 3)

Represent Si and Sj using subsequent suffixes:

⇒ the suffixes can be compared quickly because the relative order 

of Si+1, Sj+1 or Si+2, Sj+2 is known from the 1,2-array we already 
computed.



Running Time

Solves to T(n) = O(n):

• Expand big-O notation: T(n) ≤ cn + T(2n/3) for some c.

• Guess: T(n) ≤ 3cn 

• Induction step: assume that is true for all i < n.

• T(n) ≤ cn + 3c(2n/3) = cn + 2cn = 3cn ☐

T(n) = O(n) + T(2n/3)

time to sort and 
merge

array in recursive calls 
is 2/3rds the size of 
starting array



Recap

• Suffix arrays can be used to search and count substrings.

• Construction:

• Easily constructed in O(n2 log n)

• Simple algorithms to construct them in O(n) time.

• More complicated algorithms to construct them in O(n) time 
using even less space.

• More space efficient than suffix trees: just storing the original 
string + a list of integers.


