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Subset Sum

Subset Sum

Given:

• an integer bound W , and

• a collection of n items, each with a positive, integer weight wi ,

find a subset S of items that:

maximizes
∑

i∈S wi while keeping
∑

i∈S wi ≤W .

Motivation: you have a CPU with W free cycles, and want to
choose the set of jobs (each taking wi time) that minimizes the
number of idle cycles.



Assumption

We assume W and each wi is an integer.



Optimal Notation

Notation:

• Let S∗ be an optimal choice of items (e.g. a set {1,4,8}).

• Let OPT (n, W ) be the value of the optimal solution.

• We design an dynamic programming algorithm to compute
OPT (n, W ).

Subproblems:

• To compute OPT (n, W ): We need the optimal value for
subproblems consisting of the first j items for every knapsack
size 0 ≤ w ≤W .

• Denote the optimal value of these subproblems by OPT (j , w).



Recurrence

Recurrence: How do we compute OPT (j , w) given solutions to
smaller subproblems?

OPT (j , W ) = max

{
OPT (j − 1, W ) if j 6∈ S∗

wj + OPT (j − 1, W − wj) if j ∈ S∗

Special case: if wj > W then OPT (j , W ) = OPT (j − 1, W ).



Another way to write it. . .

OPT (j , W ) =


OPT (j − 1, W ) if wj > W

max

{
OPT (j − 1, W ) if j 6∈ S∗

wj + OPT (j − 1, W − wj) if j ∈ S∗

Note: Because we don’t know the answer to the blue questions, we
have to try both.



The table of solutions
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Filling in a box using smaller problems
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Filling in a box using smaller problems
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Remembering Which Subproblem Was Used

When we fill in the gray box, we also record which subproblem was
chosen in the maximum:
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Filling in the Matrix

Fill matrix from bottom to top, left to right.
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When you are filling in box, you only need to look at boxes you’ve
already filled in.



Pseudocode

SubsetSum(n, W):
Initialize M[0,w] = 0 for each w = 0,...,W
Initialize M[i,0] = 0 for each i = 1,...,n

For i = 1,...,n: for every row
For w = 0,...,W: for every column

If w[i] > w: case where item can’t fit
M[i,w] = M[i-1,w]

M[i,w] = max( which is best?
M[i-1,w],
w[j] + M[i-1, W-w[j]]

)
Return M[n,W]



Finding The Choice of Items

Follow the arrows backward starting at the top right:
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Which items does this path imply?

8, 5, 4, 2



Finding The Choice of Items
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Which items does this path imply? 8, 5, 4, 2



Runtime

Runtime:

• O(nW ) to fill in the matrix.

• O(n) time to follow the path backwards.

• Total running time is O(nW ).

This is pseudo-polynomial because it depends on the size of the
input numbers.



Knapsack

Knapsack

Given:

• a bound W , and

• a collection of n items, each with a weight wi ,

• a value vi for each weight

Find a subset S of items that:

maximizes
∑

i∈S vi while keeping
∑

i∈S wi ≤W .

Difference from Subset Sum: want to maximize value instead of
weight.



How can we solve Knapsack?

How can we solve Knapsack?



Knapsack

Subset Sum:

OPT (j , W ) = max

{
OPT (j − 1, W ) if j 6∈ S∗

wj + OPT (j − 1, W − wj) if j ∈ S∗

Knapsack:

OPT (j , W ) = max

{
OPT (j − 1, W ) if j 6∈ S∗

vj + OPT (j − 1, W − wj) if j ∈ S∗



Knapsack

Subset Sum:

OPT (j , W ) = max

{
OPT (j − 1, W ) if j 6∈ S∗

wj + OPT (j − 1, W − wj) if j ∈ S∗

Knapsack:

OPT (j , W ) = max

{
OPT (j − 1, W ) if j 6∈ S∗

vj + OPT (j − 1, W − wj) if j ∈ S∗



Fractional Knapsack

0-1 Knapsack

You’re presented with n, where item i has value vi and size wi .
You have a knapsack of size W , and you want to take the items S
so that

•
∑

i∈S vi is maximized, and

•
∑

i∈S wi ≤W .

This is a hard problem. However, if we are allowed to take
fractions of items we can do it with a simple greedy algorithm:

• Value of a fraction f of item i is f · vi

• Weight of a fraction f is f · wi .



Knapsack Example

Idea: Sort the items by pi = vi/wi

Larger vi is better, smaller wi is better.
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3

4

knapsack size = 6

$30

$40

$45

$100

p1 = 30

p2 = 20

p3 = 15

p4 = 25

1 4 1/2

$30       +             $100     +         (1/2)*$40              = $150



0-1 Knapsack

This greedy algorithm doesn’t work for 0-1 knapsack, where we
can’t take part of an item:
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knapsack size = 6
Greedy Choice:

$30

$40

$45

$100

p1 = 30

p2 = 20

p3 = 15

p4 = 25

1 4

$30       +             $100                                   = $130

4 2A better choice:


	Subset Sum & Knapsack
	Subset Sum
	Knapsack
	Fractional Knapsack


