## CMSC 451: Subset Sum & Knapsack

## Slides By: Carl Kingsford



Department of Computer Science University of Maryland, College Park

Based on Section 6.4 of Algorithm Design by Kleinberg & Tardos.

#### Subset Sum

Given:

• an integer bound *W*, and

• a collection of *n* items, each with a positive, integer weight *w<sub>i</sub>*, find a subset *S* of items that:

maximizes 
$$\sum_{i \in S} w_i$$
 while keeping  $\sum_{i \in S} w_i \leq W$ .

**Motivation:** you have a CPU with W free cycles, and want to choose the set of jobs (each taking  $w_i$  time) that minimizes the number of idle cycles.

# We assume W and each $w_i$ is an integer.

## Notation:

- Let  $S^*$  be an optimal choice of items (e.g. a set  $\{1,4,8\}$ ).
- Let OPT(n, W) be the value of the optimal solution.
- We design an dynamic programming algorithm to compute *OPT*(*n*, *W*).

## Subproblems:

- To compute OPT(n, W): We need the optimal value for subproblems consisting of the first j items for every knapsack size 0 ≤ w ≤ W.
- Denote the optimal value of these subproblems by OPT(j, w).

<u>Recurrence</u>: How do we compute OPT(j, w) given solutions to smaller subproblems?

$$OPT(j, W) = \max \begin{cases} OPT(j-1, W) & \text{if } j \notin S^* \\ w_j + OPT(j-1, W - w_j) & \text{if } j \in S^* \end{cases}$$

Special case: if  $w_j > W$  then OPT(j, W) = OPT(j-1, W).

$$OPT(j, W) = \begin{cases} OPT(j-1, W) & \text{if } w_j > W \\ \max \begin{cases} OPT(j-1, W) & \text{if } j \notin S^* \\ w_j + OPT(j-1, W - w_j) & \text{if } j \in S^* \end{cases}$$

Note: Because we don't know the answer to the blue questions, we have to try both.

## The table of solutions



## Filling in a box using smaller problems



## Filling in a box using smaller problems



# Remembering Which Subproblem Was Used

When we fill in the gray box, we also record which subproblem was chosen in the maximum:



# Filling in the Matrix

Fill matrix from bottom to top, left to right.



When you are filling in box, you only need to look at boxes you've already filled in.

## Pseudocode

```
SubsetSum(n, W):
Initialize M[0,w] = 0 for each w = 0, \ldots, W
Initialize M[i,0] = 0 for each i = 1,...,n
For i = 1,...,n:
                              for every row
   For w = 0, ..., W:
                              for every column
      If w[i] > w:
                            case where item can't fit
         M[i,w] = M[i-1,w]
      M[i,w] = max(
                             which is best?
         M[i-1,w],
         w[j] + M[i-1, W-w[j]]
      )
Return M[n,W]
```

# Finding The Choice of Items

Follow the arrows backward starting at the top right:



Which items does this path imply?

# Finding The Choice of Items

Follow the arrows backward starting at the top right:



Which items does this path imply? 8, 5, 4, 2

## Runtime

#### Runtime:

- O(nW) to fill in the matrix.
- O(n) time to follow the path backwards.
- Total running time is O(nW).

This is pseudo-polynomial because it depends on the size of the input numbers.

# Knapsack

#### Knapsack

Given:

- a bound W, and
- a collection of n items, each with a weight  $w_i$ ,
- a value v<sub>i</sub> for each weight

Find a subset S of items that:

maximizes  $\sum_{i \in S} v_i$  while keeping  $\sum_{i \in S} w_i \leq W$ .

**Difference from Subset Sum**: want to maximize value instead of weight.

# How can we solve Knapsack?

#### Subset Sum:

$$OPT(j, W) = \max \begin{cases} OPT(j-1, W) & \text{if } j \notin S^* \\ w_j + OPT(j-1, W - w_j) & \text{if } j \in S^* \end{cases}$$

#### Subset Sum:

$$OPT(j, W) = \max \begin{cases} OPT(j-1, W) & \text{if } j \notin S^* \\ w_j + OPT(j-1, W - w_j) & \text{if } j \in S^* \end{cases}$$

Knapsack:

$$OPT(j, W) = \max \begin{cases} OPT(j-1, W) & \text{if } j \notin S^* \\ \frac{V_j}{V_j} + OPT(j-1, W - w_j) & \text{if } j \in S^* \end{cases}$$

#### 0-1 Knapsack

You're presented with n, where item i has value  $v_i$  and size  $w_i$ . You have a knapsack of size W, and you want to take the items S so that

- $\sum_{i \in S} v_i$  is maximized, and
- $\sum_{i\in S} w_i \leq W$ .

This is a hard problem. However, if we are allowed to take fractions of items we can do it with a simple greedy algorithm:

- Value of a fraction f of item i is  $f \cdot v_i$
- Weight of a fraction f is  $f \cdot w_i$ .

# **Knapsack Example**

**Idea:** Sort the items by  $p_i = v_i/w_i$ Larger  $v_i$  is better, smaller  $w_i$  is better.



# 0-1 Knapsack

This greedy algorithm doesn't work for 0-1 knapsack, where we can't take part of an item:

