
Lists, Queues, Stacks,
Deques

Lecture 2: CMSC 420

General List ADT

• The simplest (and often most useful) data structure is a
linear list: only care about linear ordering of items.

• Supports the following operations:
- get(L, i) – return the ith item in L

- insert(L, k, i) – insert k before item at index i

- delete(L, i) – delete item at index i

- length(L) – return number of item in L

- split(L, k) – split L into 3 lists: items before k, {k}, items after k

- copy(L) – return a copy of list L

- find(L, k) – find item with key k

- sort(L) – sort list L

• Implementation will depend on which subset of these
operations are needed.

Stacks, Queues, Deques

Stack:
top

fro
nt

back

Queue:

Deque:
“Deck”

push, pop

enqueue, dequeue

aka LIFO

aka FIFO

{enqueue, dequeue}
{front, back}

input-restricted deque: enqueue only one end
output-restricted deque: dequeue only one end

Special cases of List ADT: restrict insert, delete, and get to a
subset of the ends of the list:

General List ADT

• Stacks useful to save subproblems to solve later.

• Queues for processing events.

• Deques for more general needs (e.g. undo adding an event
to a queue).

Stacks & Recursion

void drawWindow(W) {
 saveGraphicsState();
 // call complicated drawing routines
 restoreGraphicsState();
}

int treeHeight(Node * T) {
 if(!T) return 0;
 return 1 + max(

 treeHeight(T->left),

 treeHeight(T->right)
);
}

push local vars &
return address

pop return
address, return to
it, pop local vars

Thus, can eliminate recursion by replacing it with an explicitly
managed stack.

Another common example:

As long as save and restore calls are balanced, will work out.

Sequential Allocation

• “int X[n]” allocates a block sizeof(int)*n bytes.

• Logically, X[0] is the first item, X[1] the second, X[n-1] is the
last.

• Address of ith item: ADDR(X[i]) = X + i*sizeof(int)

• Natural way to implement stacks, queues, etc., especially if
their max size is known in advance.

X[1], X[2], X[3], ..., X[n]

X =

int X[n];

10 14 18 ...

Sequential Allocation – Two Stacks

free

to
p1

bo
tto

m
1

to
p2

bo
tto

m
2

Total Buffer Space

• Properties:
- Stacks don’t “move”
- OVERFLOW occurs only when sum of sizes of stacks exceeds

buffer space.

Sequential Allocation – More Than Two Stacks

• If top[i] == bottom[i+1], there’s no room to push anything
onto stack i.

• In this case, check each j > i to find smallest j such that
top[j] < bottom[j+1]. If such a j exists, shift everything
between bottom[i+1] to top[j] up by 1.

• If no such j exists, find gap between stacks numbered < i.

to
p[

1]

bo
tto

m
[1

]

to
p[

2]

bo
tto

m
[2

]

to
p[

3]

bo
tto

m
[3

]

to
p[

4]

bo
tto

m
[4

]

Sequential Allocation – Ring Buffer

• Natural implementation of queue in sequential buffer:

• What if R > F always? Pretend X is circular:

push: X[++R] = k;
pop: k = X[++F]; if(R==F) R=F=0;

X =

RF

push:
R = (R+1) % n;
X[R] = k;

pop:
 F = (F+1) % n;
 X[F] = k;
 if(R==F) R=F=n;

Sequential Allocation – Ring Buffer

• Why isn’t this “creeping” a problem in a bank line?

Sequential Searching

• Basic sequential searching:

• Expected cost of...
- success = 2n/2 comparisons

- failure = 2n comparisons

• Remove factor of 2 by using a sentinel:

• Must be able to cheaply add item to end of list.

for(i = 0; i < n; i++)
 if(X[i] == K) break;

X[1], X[2], X[3], ..., X[n]

X[n+1] = K
for(i = 0; ; i++)
 if(X[i] == K) break;

Why does success take n/2 comparisons?

• Assume we’re equally likely to ask for any key.

- Probability we ask for ith key is 1/n.

- Expected number of comparisons is

X[1], X[2], X[3], ..., X[n]

Sorted Sequential Searching

• Can stop earlier if list is in sorted order:

• Expected cost of...
- success = 2n/2 comparisons

- failure = 2n/2 comparisons

• Why do this instead of binary search?
- May not have random access into list

- Exploits locality

for(i = 0; i < n; i++)
 if(X[i] >= K) break;
if(X[i] != K) return FAIL;

Use access probabilities to order information

• Put most accessed information first, least used last.

• Violates the idea of worst case analysis.

• But often very useful in practice.

Use access probabilities to order information

• Expected # of comparisons over many searches:

Cn = 1p1 + 2p2 + 3p3 + ... + npn

• But don’t usually know the pi

x1
 x2
 x3
 x4 ...
p1
 p2
 p3
 p4 ...

items:
probability of access:

Self-organizing Lists

• Heuristics to improve repeated access to same elements.

• Move to Front:
✴ When an item is accessed, move it to the front of the list.

• Expected number of comparisons is < 2 times the optimal ordering.

• Rearranges list quickly.

• A rare, low-probability access effects many subsequent searches.

• Transpose:

✴ When item i is accessed, swap(i-1, i).
• Expected number of comparisons less than Move-to-Front.

• But adapts slower.

Self-organizing Lists

• Probably not a good as the search trees will discuss in a
few classes, but
• Simple code change can lead to good speed up.
• Fast insert time, so if lookups are rare relative to inserts,

might be faster.
• Low space overhead.

Sets

• A set S is a collection of objects from some universe U.

• Only interested in whether an object u is in S.

• Item operations:
• insert(S, u)

• delete(S, u)

• is_member(S, u)

• Operations on sets:
• S = S1 intersect S2: u in S iff u in S1 and S2

• S = S1 union S2: u in S if u in S1 or u in S2

• S = S1 - S2 (sometimes written S1 \ S2): u in S if u in S1 but not in S2

• S = S1 symmetric difference S2 = u in S if u in S1 but not S2 or u in S2
but not S1.

Sets – Example application

The House of
Representatives shall be
composed of Members
chosen every second Year
by the People of the several
States, and the Electors in
each State shall have the
Qualifications requisite for
Electors of the most
numerous Branch of the
State Legislature.

No Person shall be a
Representative who shall
not have attained to the Age
of twenty five Years, and
been seven Years a Citizen
of the United States, and
who shall not, when elected,
be an Inhabitant of that State
in which he shall be chosen.

Universe U = {English words}

house 1
representatives 1
people 1
democracy 0
dictator 0
privacy 0
electors 1
...

Compare documents based on sets of
words they contain.

Symmetric Difference

• S = S1 symmetric difference S2 = u in S if u in S1 but not S2 or u in S2 but
not S1.

• Symmetric difference

= (A - B) union (B - A)

= (A union B) - (A intersect B)

S1 S2

S1 - S2

S2 - S1

S1 intersect S2

S1 union S2

Bit Vectors

• If universe U is small enough, can represent a set by a bit vector, with
one dimension for each possible element in U.

• s1 = 001001010101001001

• s2 = 0001010100001111111

• Intersection = bitwise AND (s1&s2 in C/C++)

• Union = bitwise OR (s1|s2 in C/C++)

• Complement = bitwise NEGATION (~s1 in C/C++)

• Set difference (s1 - s2)???

• Symmetric difference???

S1 S2

Bit Vectors

• If universe U is small enough, can represent a set by a bit vector, with
one dimension for each possible element in U.

• s1 = 001001010101001001

• s2 = 0001010100001111111

• Intersection = bitwise AND (s1&s2 in C/C++)

• Union = bitwise OR (s1|s2 in C/C++)

• Complement = bitwise NEGATION (~s1 in C/C++)

• Set difference (s1 - s2)???

• Symmetric difference???

S1 S2

A&~B

Bit Vectors

• If universe U is small enough, can represent a set by a bit vector, with
one dimension for each possible element in U.

• s1 = 001001010101001001

• s2 = 0001010100001111111

• Intersection = bitwise AND (s1&s2 in C/C++)

• Union = bitwise OR (s1|s2 in C/C++)

• Complement = bitwise NEGATION (~s1 in C/C++)

• Set difference (s1 - s2)???

• Symmetric difference???

S1 S2

A&~B
A ^ B

Linked Allocation

• Records need not be located in adjacent memory.

• Each node has at least 2 fields:

• Need to keep a pointer to the first node:

key next

key next

key next

key next

key next
First

Zig-zag scan

• Suppose L is a singly linked list.

• Problem: Find the node 3 nodes before the one containing
“G”.

• Any thoughts about how to solve this problem?

A

First
C

Q

B

Z

G

F

M

Zig-zag scan

• Walk down list, pushing node addresses onto a stack.

• When you find “G”, pop 3 addresses off the stack.

• Extra storage: O(1) per node & only used when needed.

A

First
C

Q

B

Z

G

F

M

Link inversion

• What if we want to use only O(1) space to solve that
problem?

• As we walk down the list with two pointers P, Q, we
reverse the NEXT pointers to point to the previous node:

A

Firs
C

Q

B

Z

G

F

M

A

First
C

Q

B

Z

G

F

M

P
Q

Circularly Linked List

• “Last” node points to the “first” node.

• No longer need to think of any node as the beginning.

• Pointer to any node gives access to the whole list.

L

Circularly Linked List – Insert

void insert(Node * L, int k) {
 Node * N = new Node(k); /* create new node N */

 if(L == NULL) {
 L = N->next = N;
 } else {
 N->next = L->next;
 L->next = N;
 }
}

L
k

N

Circularly Linked List – Delete

Node * delete(Node * L) {
 if(L == NULL) {

/* ERROR: underflow! */
 } else {
 Node * P = L->next;
 L->next = P->next;
 if(L==P) L = NULL; /* list had only one node */
 delete P;
 }
 return L;
}

L P

Doubly Linked List

• Next and Prev pointers for each node.

• If F is the first node, and L is the last node, either:
- Prev(F) == Next(L) == NULL, or

- Prev(F) == Next(L) == HEADER

- With HEADER option, Prev(Next(X)) == Next(Prev(X)) == X

F L

unused

NULL
NULL

Doubly Linked List

• Advantages:
• iterate forward or backward easily,

• delete any node, given pointer to it in O(1) time

• Disadvantages:

- Extra space needed for twice as many pointers.

- Trick to get around this limitation: XOR

F L

NULL
NULL

XOR Implementation of Doubly Linked Lists

• In normal doubly linked list, each pointer value occurs
twice:
- Next(Prev(X)) = Prev(Next(X))

- 2n pointers, but only n items...

• Recall: if a, b are 0 or 1, then a XOR b = 1 if exactly one of a
or b is 1, but 0 otherwise.

• If (a XOR b) = c, then (c XOR b) = a:

01001 00100
11111 00000

XOR

10110 00100

01001 00100

11111 00000

XOR
10110 00100

XOR Implementation of Doubly Linked Lists

• If (a XOR b) = c, then (c XOR b) = a.

➡Can encode a two pointers a, b as c = (a XOR b). You can recover a and b:
• a = c XOR b,

• b = c XOR a

• So, can store 2 pointers in one location.

• Use single pointer field to hold Prev XOR Next:

A.key B

B.key A xor C

C.key B xor D

D.key C xor E

E.key D

Front
Back

More on XOR Doubly Linked Lists

• Can only be used if nodes are always accessed by walking from one end to
the middle.

• May be difficult to implement in languages like Java that discourage
pointer arithmetic.

A.key B

B.key A xor C

C.key B xor D

D.key C xor E

E.key D

Front
Back

Comparison of Linked vs. Sequential

• Linked:
• Extra storage required

• Better use of fragmented memory

• Insertion / deletion at middle is easier

• Joining lists easier

• NEXT operation requires pointer dereference

• Sequential:
• Next and Previous are implicit (less storage)

• Can take advantage of locality

• Random access

• NEXT operation probably faster

