Splay Trees
 CMSC 420: Lecture 8

AVL Trees

- Nice Features:
- Worst case $\mathrm{O}(\log n)$ performance guarantee
- Fairly simple to implement
- Problem though:
- Have to maintain extra balance factor storage at each node.
- Splay trees (Sleator \& Tarjan, 1985)
- remove extra storage requirement,
- even simpler to implement,
- heuristically move frequently accessed items up in tree
- amortized $O(\log n)$ performance
- worst case single operation is $\Omega(n)$

Splay Trees

$\operatorname{splay}(\mathrm{T}, k)$: if $k \in \mathrm{~T}$, then move k to the root. Otherwise, move either the inorder successor or predecessor of k to the root.

Without knowing how splay is implemented, we can implement our usual operations as follows:

- $\operatorname{find}(\mathrm{T}, \mathrm{k}): \operatorname{splay}(\mathrm{T}, \mathrm{k})$. If $\operatorname{root}(\mathrm{T})=k$, return k, otherwise return not found.
- $\operatorname{insert}(\mathrm{T}, \mathrm{k}): \operatorname{splay}(\mathrm{T}, \mathrm{k})$. If $\operatorname{root}(\mathrm{T})=k$, return duplicate!; otherwise, make k the root and add children as in figure.
- $\operatorname{concat}\left(\mathrm{T}_{1}, \mathrm{~T}_{2}\right)$: Assumes all keys in T_{1} are $<$ all keys in T_{2}. Splay $\left(\mathrm{T}_{1}, \infty\right)$. Now root T_{1} contains the largest item, and has no right child. Make T_{2} right child of T_{1}.
- delete($\mathrm{T}, k): \operatorname{splay}(\mathrm{T}, k)$. If root r contains k, concat $(\operatorname{LEFT}(r)$, RIGHT(r)).

Dictionary Operations, in pictures

find (T, k) : splay \& check root

delete(T, k): splay \& concat left \& right subtrees
insert(T, k): splay and insert just below root

Right rotation (at n)

Left Rotation (at \mathbf{n})

Left rotation
(aka counterclockwise rotation)

Only a constant \# of pointers need to be updated for a rotation: $\mathrm{O}(1)$ time

Right \& Left Rotations are Inverses

i moves toward the root
n moves toward the root

Double Rotation

k moves toward the root

Remembering Search Paths

1. Stack: as you walk down tree, push nodes onto stack
2. Parent pointers: always store parent (u) at every node u
3. Link inversion: as you follow link $u->v$, reverse it to $u<-v$.

Splay Operation

- $\operatorname{Splay}(\mathrm{T}, k)$: find k, walk back up root. Let x be the current node.

Case 2

Rotations with goal: move x toward the root

Case 1: no grandparent:

(Just like the single
rotation case of AVL trees)

Case 2: zigzag (right,left):

(Just like the right, left case of AVL trees: double rotation)

Case 3: zigzig (left, left):

This one is different than with AVL trees: AVL would do only

Splay Notes

- Might make tree less balanced
- Might make tree taller
- So, how can they be good?

Amortized Analysis - Concept

- Some operations will be costly, some will be cheap
- Total area of m bars bounded by some function $\mathrm{f}(m, n)$.
- $\quad \mathrm{m}=$ number of operations, $\mathrm{n}=$ number of elements
- E.g. if area $=O(m \log n)$, each operation takes $O(\log n)$ amortized time

Node Ranks \& Money Invariant

Money Invariant: we will always keep $\operatorname{rank}(u)$ dollars stored at every node.

Each rotation / double rotation costs $\$ 1$. $\mathrm{O}(1)$ amount of work

Also have to spend $\$$ to maintain invariant.

Idea:

Thm. It costs $3[\log n]+1$ dollars to splay, keeping the money invariant

- So, for every splay, we're going to spend $\mathrm{O}(\log \mathrm{n})$ new dollars.
- If we start with an empty tree, after m splay operations, we'll have spent $m(3[\log n]+1)$ dollars.
- The dollars pay for both:
- the money invariant
- cost of all the rotations (time)
- So, total time for m splay operations is $\mathrm{O}(m \log n)$.

Additional Cost of Insert \& Concat

- Cost of insert \& concat more than the cost of a splay because may have to add $\$$ s to root to maintain invariant:

$\operatorname{concat}\left(\mathrm{T}_{1}, T_{2}\right)$: root gets at most n new descendants from T_{2}, so need to put $[\log \mathrm{n}]$ dollars on root.

Thm. It costs $3[\log n]+1$ dollars to splay, keeping the money invariant.

Suppose a splay rotation at x costs the following:

$$
\begin{aligned}
& \text { case 1: } 3\left(\operatorname{rank}^{1}(x)-\operatorname{rank}(\mathrm{x})\right)+1 \\
& \text { case 2: } 3\left(\operatorname{rank}^{1}(x)-\operatorname{rank}(\mathrm{x})\right) \\
& \text { case 3: } 3\left(\operatorname{rank}^{1}(\mathrm{x})-\operatorname{rank}(\mathrm{x})\right)
\end{aligned}
$$

Then cost of a whole splay $=$

$$
\begin{array}{rlr}
& 3(\operatorname{ran}(x)-\operatorname{rank}(x)) & \\
+ & 3(\operatorname{rank}(x)-\operatorname{rank}(x)) & \\
+ & 3(\operatorname{rank}(x)-\operatorname{ran}(x)) & \text { Telescoping } \\
+ & 3\left(\operatorname{rank}^{k}(x)-\operatorname{san}(⿺-1)(x)\right)+1 &
\end{array}
$$

Then cost of a whole splay

$$
\begin{aligned}
& =3\left(\operatorname{rank}^{k}(\mathrm{x})-\operatorname{rank}(\mathrm{x})\right)+1 \\
& \leq 3\left(\operatorname{rank}^{k}(\mathrm{x})\right)+1 \quad \operatorname{rank} k^{k}(\mathrm{x})=\operatorname{rank} \text { of the original root } \\
& \leq 3[\log \mathrm{n}]+1
\end{aligned}
$$

case 1: $3\left(\operatorname{rank}^{1}(x)-\operatorname{rank}(x)\right)+1$

+1 pays for the rotation

$\operatorname{rank}^{1}(\mathrm{x})=\operatorname{rank}(\mathrm{p}(\mathrm{x}))$

Extra $\$$ to keep the invariant is: $\operatorname{rank}^{1}(x)+\operatorname{rank}^{1}(\mathrm{p}(\mathrm{x}))-(\operatorname{rank}(\mathrm{x})+\operatorname{rank}(\mathrm{p}(\mathrm{x}))$
$\$$ needed for x and $p(x) \quad \$$ already on x and $p(x)$

$$
\begin{aligned}
& =\operatorname{rank}^{1}(\mathrm{p}(\mathrm{x}))-\operatorname{rank}(\mathrm{x}) \\
& \leq \operatorname{rank}^{1}(\mathrm{x})-\operatorname{rank}(\mathrm{x})
\end{aligned}
$$

case 2: $3\left(\operatorname{rank}^{1}(\mathrm{x})-\operatorname{rank}(\mathrm{x})\right)$

$$
\begin{aligned}
\text { \$ needed to add: } & \operatorname{rank}^{1}(\mathrm{R})-\operatorname{rank}(\mathrm{x}) \\
& \leq \operatorname{rank}^{1}(\mathrm{x})-\operatorname{rank}(\mathrm{x})
\end{aligned}
$$

If $\operatorname{rank}^{1}(x)-\operatorname{rank}(x)>0$, then we have at least $\$ 1$ to pay for the rotations.

Otherwise $r^{1}(x)=r(x)=r(R)=r(S)$
Also, $\mathrm{r}^{1}(\mathrm{R})<\mathrm{r}^{1}(\mathrm{x})$ or $\mathrm{r}^{1}(\mathrm{~S})<\mathrm{r}^{1}(\mathrm{x})$
So, $\mathrm{r}^{1}(\mathrm{R})<\mathrm{r}(\mathrm{x})$ or $\mathrm{r}^{1}(\mathrm{~S})<\mathrm{r}(\mathrm{S})$
case 3: $3\left(\operatorname{rank}^{1}(x)-\operatorname{rank}(x)\right)$

$\$$ needed to add:

$$
\begin{array}{|l|l|}
\hline \mathrm{r}^{1}(\mathrm{x})+\mathrm{r}^{1}(\mathrm{~S})+\mathrm{r}^{1}(\mathrm{R})-(\mathrm{r}(\mathrm{x})+\mathrm{r}(\mathrm{~S})+\mathrm{r}(\mathrm{R})) \\
\text { \$ needed for moved nodes } & \$ \text { already on moved nodes }
\end{array}
$$

$$
\begin{aligned}
& r^{1}(S)+r^{1}(R)-(r(x)+r(S)) \quad r^{1}(x)=r(R) \\
& \leq 2\left(r^{1}(x)-r(x)\right) \quad r^{1}(R) \leq r^{1}(S) \leq r^{1}(x) \\
& r(x) \leq r(S)
\end{aligned}
$$

