
Splay Trees
CMSC 420: Lecture 8



AVL Trees

• Nice Features:

- Worst case O(log n) performance guarantee

- Fairly simple to implement

• Problem though:

- Have to maintain extra balance factor storage at each node.

• Splay trees (Sleator & Tarjan, 1985)

- remove extra storage requirement, 

- even simpler to implement, 

- heuristically move frequently accessed items up in tree

- amortized O(log n) performance

- worst case single operation is Ω(n)



Splay Trees

• find(T, k): splay(T, k). If root(T) = k, return k, otherwise 
return not found.

• insert(T, k): splay(T, k). If root(T) = k, return duplicate!; 
otherwise, make k the root and add children as in figure.

• concat(T1, T2): Assumes all keys in T1 are < all keys in T2. 
Splay(T1, ∞). Now root T1 contains the largest item, and 
has no right child. Make T2 right child of T1.

• delete(T, k): splay(T, k). If root r contains k, concat(LEFT(r), 
RIGHT(r)).

splay(T, k): if k ∈ T, then  move k to the root. Otherwise, move 
either the inorder successor or predecessor of k to the root.

Without knowing how splay is implemented, we can implement our
usual operations as follows:
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Dictionary Operations, in pictures
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find(T, k): splay 
& check root
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insert(T, k): splay and 
insert just below root

?

delete(T, k): splay 
& concat left & 
right subtrees



Right rotation (at n)
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Right rotation
(aka clockwise rotation)



Left Rotation (at n)

n

i
n

i

Left rotation
(aka counterclockwise rotation)

Only a constant # of pointers need to be updated for a rotation: O(1) time



Right & Left Rotations are Inverses
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i moves toward the root n moves toward the root



Double Rotation
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Remembering Search Paths

1. Stack: as you walk down 
tree, push nodes onto stack

2. Parent pointers: always 
store parent(u) at every 
node u

3. Link inversion: as you 
follow link u -> v, reverse it 
to u <- v.



Splay Operation

• Splay(T, k): find k, walk back 
up root. Let x be the current 
node. 

• Cases:
1. x has no grandparent

2. x is left child of parent(x), 
which is the right child of 
parent2(x).

3. x is left child of parent(x), 
which is the left child of 
parent(parent(x)) = parent2(x)
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Case 1

Case 2

Case 3

Rotations with goal: 
move x toward the root



x

Case 1: no grandparent:

x
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p(x)
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p(x)
Single rotation 

around p(x)

(Just like the single 
rotation case of AVL trees)



Case 2: zigzag (right,left):
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p(x)p2(x)

Rotation 
around p(x)

Rotation 
around p(x)

(Just like the right, left 
case of AVL trees: 
double rotation)



Case 3: zigzig (left, left):
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p2(x)

Rotation 
around p2(x)

Rotation 
around p(x)

This one is different 
than with AVL trees: 
AVL would do only 

one rotation



Splay Notes

• Might make tree less balanced

• Might make tree taller

• So, how can they be good?



Amortized Analysis – Concept

• Some operations will be costly, some will be cheap

• Total area of m bars bounded by some function f(m,n).

- m = number of operations, n = number of elements

• E.g. if area = O(m log n), each operation takes O(log n) 
amortized time
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Node Ranks & Money Invariant

w(u)
:= weight of u

 := # nodes in the subtree rooted at u

rank(u) := [log w(u)]

Money Invariant: we will always keep rank(u) 
dollars stored at every node.

Each rotation/double rotation costs $1.
O(1) amount of work

[x] means floor(x)

Also have to spend $ to maintain invariant.



Idea:

• So, for every splay, we’re going to spend O(log n) 
new dollars.

• If we start with an empty tree, after m splay 
operations, we’ll have spent m(3[log n] +1) dollars.

• The dollars pay for both:

- the money invariant

- cost of all the rotations (time)

• So, total time for m splay operations is O(m log n).

Thm. It costs 3[log n] + 1 dollars to splay, 
keeping the money invariant 



Additional Cost of Insert & Concat

• Cost of insert & concat more than the cost of a splay 
because may have to add $s to root to maintain 
invariant:
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insert(T, k): k has n 
descendants, so need 
to put [log n] $ on k

concat(T1, T2): root gets at most 
n new descendants from T2, so 
need to put [log n] dollars on 

root. 

T2
T1



Thm. It costs 3[log n] + 1 dollars to splay, keeping the 
money invariant.

case 1: 
case 2:
case 3:

3(rank1(x) - rank(x)) + 1
3(rank1(x) - rank(x))
3(rank1(x) - rank(x))

Suppose a splay rotation at x costs the following:

Then cost of a whole splay = 

Then cost of a whole splay 

 = 3(rankk(x) - rank(x)) + 1 

 ≤ 3(rankk(x)) + 1 

 ≤ 3[log n] + 1

3(rank1(x) - rank(x))
+ 3(rank2(x) - rank1(x))
+ 3(rank3(x) - rank2(x))

+ 3(rankk(x) - rank(k-1)(x)) + 1

Telescoping
sum

rankk(x) = rank of the original root



case 1: 3(rank1(x) - rank(x)) + 1

x
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p(x) x
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p(x)

+1 pays for the rotation

Extra $ to keep the invariant is:

 rank1(x) + rank1(p(x)) - (rank(x) + rank(p(x))

$ needed for x and p(x) $ already on x and p(x)

rank1(x) = rank(p(x))

= rank1(p(x)) - rank(x)
≤ rank1(x) - rank(x)
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$

$

rank1(R) - rank(x)
≤ rank1(x) - rank(x)

$

case 2: 3(rank1(x) - rank(x))

If rank1(x) - rank(x) > 0, then 
we have at least $1 to pay for 

the rotations.

Otherwise r1(x) = r(x) = r(R) = r(S)
Also, r1(R) < r1(x) or r1(S) < r1(x)

So, r1(R) < r(x) or r1(S) < r(S)

$ needed to add:



case 3: 3(rank1(x) - rank(x))
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r1(x) = r(R)

r1(x) + r1(S) + r1(R) - (r(x) + r(S) + r(R))
$ needed to add:

$ needed for moved nodes $ already on moved nodes

r1(S) + r1(R) - (r(x) + r(S))

≤ 2(r1(x) - r(x)) r1(R) ≤ r1(S) ≤ r1(x)
r(x) ≤ r(S)


