
CMSC 451: Shortest Paths with Negative
Weights

Slides By: Carl Kingsford

Department of Computer Science

University of Maryland, College Park

Based on Section 6.8 of Algorithm Design by Kleinberg & Tardos.



Dynamic Programming Principles, Reviewed

Dynamic Programming Pattern:

1 Decompose the problem into subproblems.

2 Recursively define the value of a solution of a subproblem by
the value of solutions of smaller subproblems.

3 Compute the value of the solutions for subproblems from
smaller to larger.

4 Use the choices made (arrows) to reconstruct an actual
solution.



DP Principles, 2

Principle of Optimality: A problem obeys this principle if an
optimal solution to the problem contains within it optimal
solutions to subproblems.

• Solution to the problem requires making a choice e.g. include
the last interval or not?

• This choice leaves 1 or more subproblems unsolved.

• Assuming you’re given the optimal solution to these
subproblems, you show how to construct the optimal solution
to the larger subproblem.



Shortest Path Problem

Shortest Path with Negative Weights

Given directed graph G with weighted edges (weights may be
positive or negative), find the shortest path from s to t.



Complication of Negative Weights

Negative cycles: If some cycle has a negative total cost, we can
make the s − t path as low cost as we want:

Go from s to some node on the cycle, and then travel around the
cycle many times, eventually leaving to go to t.

ws t

Assume, therefore, that G has no negative cycles.



Let’s just add a big number!

• Adding a large number M to each edge doesn’t work!

• The cost of a path P will become M × length(P) + cost(P).

• If M is big, the number of hops (length) will dominate.

s t

-10
15

15
0

11

2 2
12 12

2 → 24

-4 → 26



Subproblems

Definition

OPT (v , i) is minimum cost of a path from s to v that uses at
most i edges.

1 If best s − v path uses at most i − 1 edges, then
OPT (v , i) = OPT (v , i − 1).

2 If best s − v uses i edges, and the last edge is (w , v), then
OPT (v , i) = cwv + OPT (w , i − 1).



Subproblems, picture

s

w1

v

w2

OPT(w1,i-1)

OPT(w2,i-1)



Recurrence

Let N(w) be the neighbors of w .

OPT (v , i) = cost of best path from s to v using at most i edges.

Recurrence:

OPT (v , i) = min

{
OPT (v , i − 1)

minw∈N(v) OPT (w , i − 1) + cwv

Goal: Compute OPT (t, n − 1).



What do we need i?

Why do we introduce the variable i?

• i gives us a natural ordering on the problems from larger to
smaller.

• To solve OPT (v , i) we need to know only OPT (w , k) for
k < i .

=⇒ by expanding our class of subproblems, ordering them can
become simpler.



What do we need i?

Why do we introduce the variable i?

• i gives us a natural ordering on the problems from larger to
smaller.

• To solve OPT (v , i) we need to know only OPT (w , k) for
k < i .

=⇒ by expanding our class of subproblems, ordering them can
become simpler.



Code

ShortestPath(G, s, t):
For i = 1,...,n-1:
For v in V:
// try all possible w’s:
best_w = None
for w in N(v):

best_w = min(best_w, OPT[i-1,w] + c[w,v])

M[v,i] = max(best_w, OPT[v, i-1])
EndFor

EndFor
Return M[t, n-1]



Running Time

Simple Analysis:

• O(n2) subproblems

• O(n) time to compute each entry in the table
(have to search over all possible neighbors w).

• Therefore, runs in O(n3) time.

A better analysis:

• Let nv be the number of edges entering v .

• Filling in each entry actually only takes O(nv ) time.

• Total time = O
(
n
∑

v∈V nv

)
= O(nm).


	Shortest Paths with Negative Weights

