Slides By: Carl Kingsford

.aé\“‘ T&qc\
AR
Department of Computer Science
University of Maryland, College Park

Based on Section 6.8 of Algorithm Design by Kleinberg & Tardos.




Dynamic Programming Pattern:

@ Decompose the problem into subproblems.

® Recursively define the value of a solution of a subproblem by
the value of solutions of smaller subproblems.

©® Compute the value of the solutions for subproblems from
smaller to larger.

@ Use the choices made (arrows) to reconstruct an actual
solution.



Principle of Optimality: A problem obeys this principle if an
optimal solution to the problem contains within it optimal
solutions to subproblems.

e Solution to the problem requires making a choice e.g. include
the last interval or not?

e This choice leaves 1 or more subproblems unsolved.

e Assuming you're given the optimal solution to these
subproblems, you show how to construct the optimal solution
to the larger subproblem.



Shortest Path with Negative Weights

Given directed graph G with weighted edges (weights may be
positive or negative), find the shortest path from s to t.




Negative cycles: If some cycle has a negative total cost, we can
make the s — t path as low cost as we want:

Go from s to some node on the cycle, and then travel around the
cycle many times, eventually leaving to go to t.

Assume, therefore, that G has no negative cycles.



e Adding a large number M to each edge doesn't work!
e The cost of a path P will become M x length(P) + cost(P).

e If M is big, the number of hops (length) will dominate.



Definition
OPT (v, i) is minimum cost of a path from s to v that uses at
most / edges.

@ If best s — v path uses at most / — 1 edges, then
OPT(v,i) = OPT(v,i—1).

@® If best s — v uses i edges, and the last edge is (w, v), then






Let N(w) be the neighbors of w.
OPT (v, i) = cost of best path from s to v using at most / edges.

Recurrence:

OPT(v,i—1)

OPT(v,i) =min¢ )
minyen(v) OPT(w, i — 1)+ cuy

Goal: Compute OPT(t,n—1).



Why do we introduce the variable /7




Why do we introduce the variable /7

e j gives us a natural ordering on the problems from larger to
smaller.

e To solve OPT(v,i) we need to know only OPT (w, k) for
k <.

= by expanding our class of subproblems, ordering them can
become simpler.



ShortestPath(G, s, t):
For i =1,...,n-1:
For v in V:
// try all possible w’s:
best_w = None
for w in N(v):
best_w = min(best_w, OPT[i-1,w] + clw,v])

M[v,i] = max(best_w, OPT[v, i-1])
EndFor
EndFor
Return M[t, n-1]



Simple Analysis:

e O(n?) subproblems

e O(n) time to compute each entry in the table
(have to search over all possible neighbors w).

e Therefore, runs in O(n%) time.

A better analysis:

e Let n, be the number of edges entering v.
e Filling in each entry actually only takes O(n,) time.
e Total time = O (nY_,cy nv) = O(nm).



	Shortest Paths with Negative Weights

