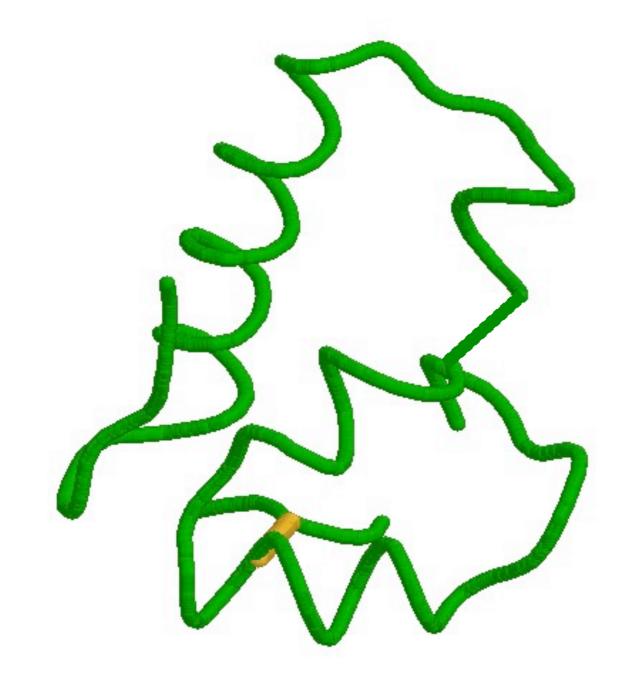
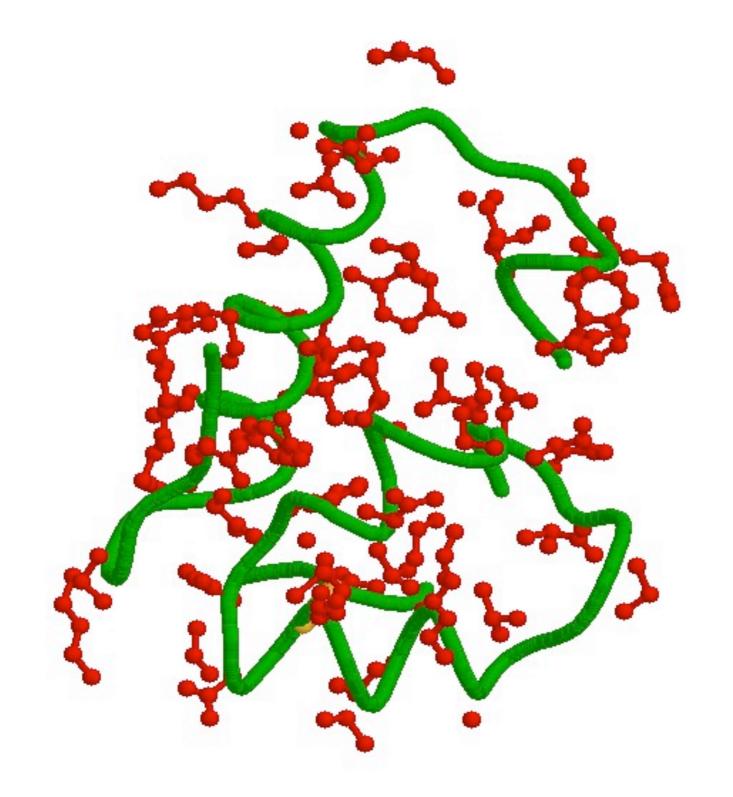
Side-Chain Positioning CMSC 423 Protein Structure



Backbone

Protein Structure



Backbone Side-chains

Side-chain Positioning

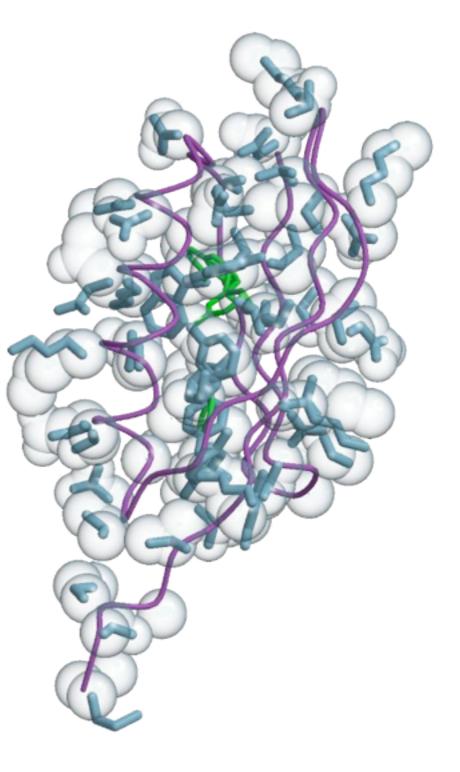
Given:

- amino acid sequence
- position of backbone in space

Find best 3D positions for side chains

"Best" = lowest-energy

Discrete formulation reasonable using rotamers



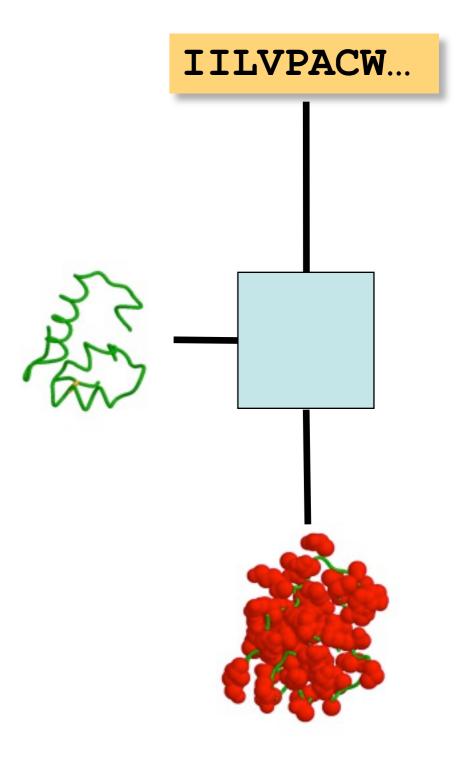
Side-chain Positioning Problem

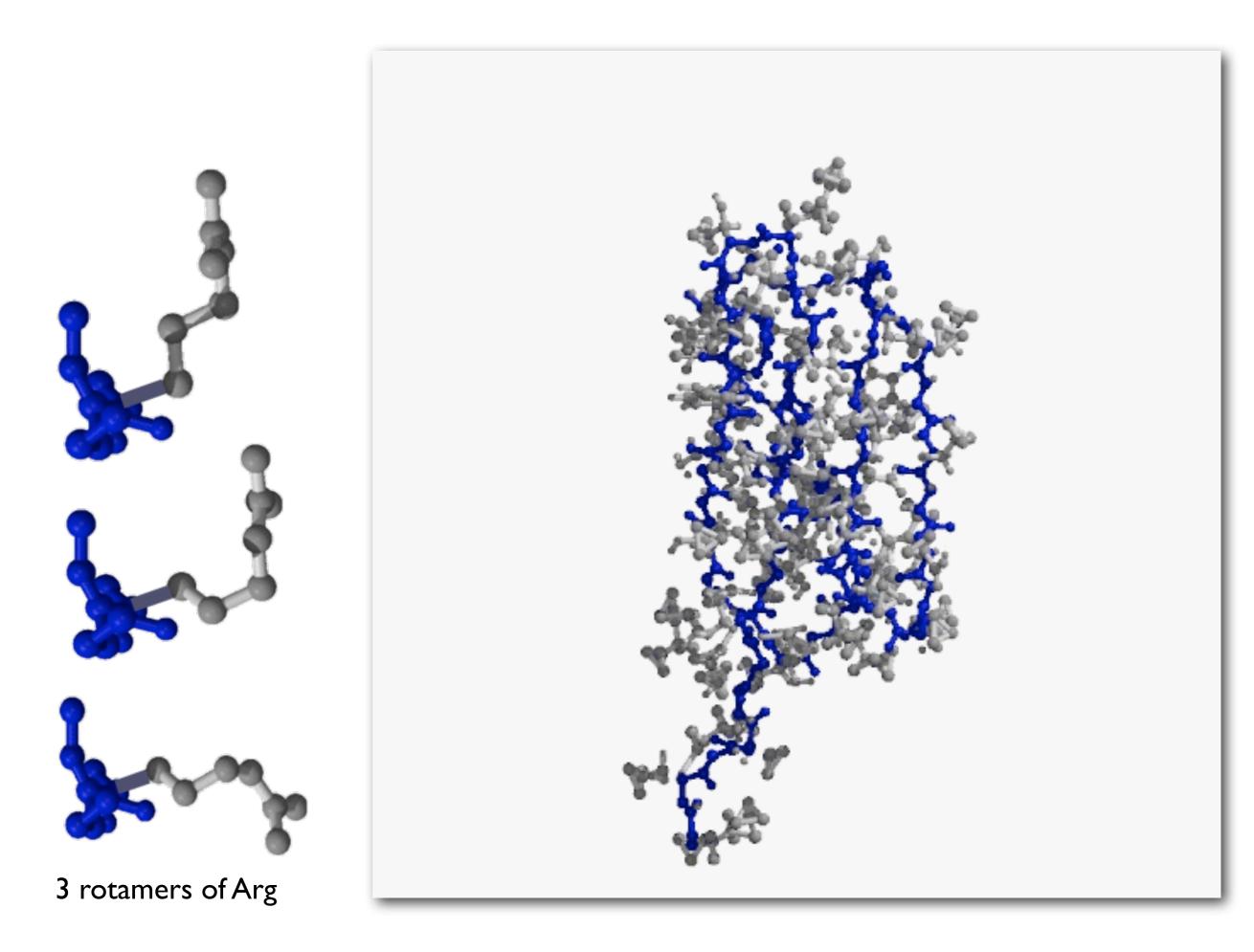
Given:

- fixed backbone
- amino acid sequence

Find the 3D positions for the side-chains that minimize the energy of the structure

Assume lowest energy is best





Applications

Homology modeling

Rapid, low-cost structure determination

Protein design

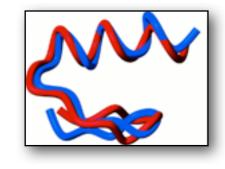
- Find sequence that folds into a given shape
- e.g. redesign of zinc finger that folds without zinc, (Dahiyat+97)

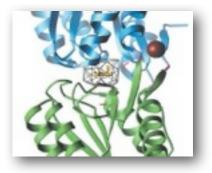
Ligand binding

e.g. novel binding pockets (Looger+03)

Subroutine in flexible backbone prediction

e.g. (Bradley+,2005)





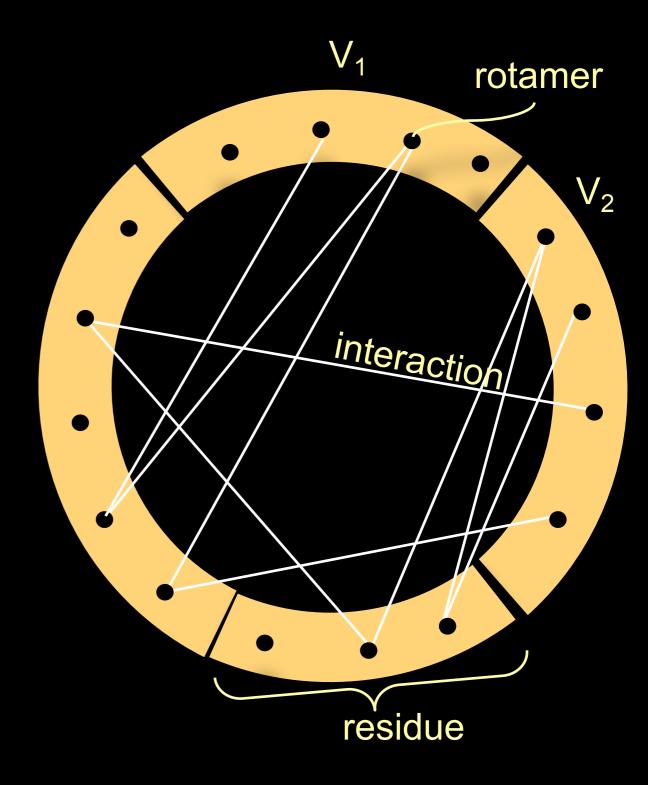
Graph Problem

Graph with part V_i for each side chain:

- node for each rotamer
- edge {u,v} represents the interaction between u and v

Weights:

- E(u) = self-energy
- E(u,v) = interaction energy

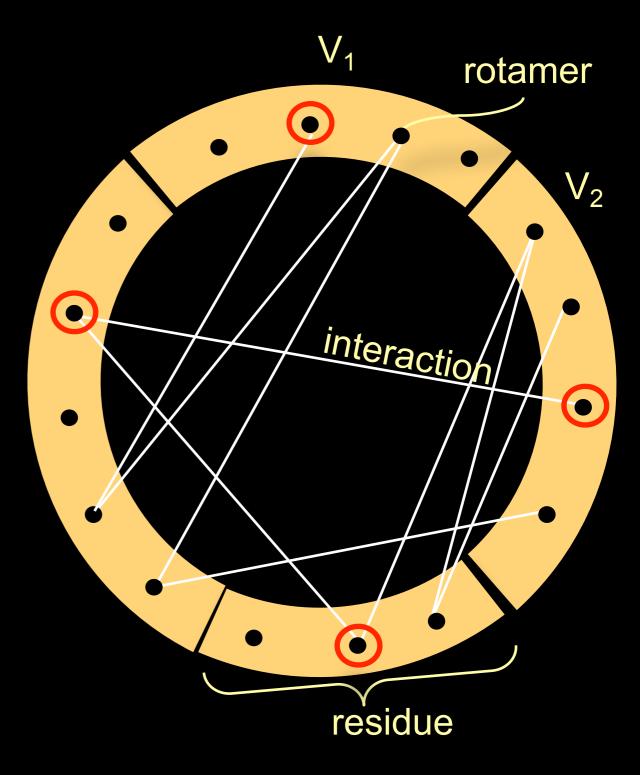


Graph Problem

Solution is one node from each part

Cost of solution is cost of induced subgraph

Goal: pick one node from each position to minimize the cost of the induced subgraph



Hardness

NP-hard to approximate the minimum energy within a factor of cn where c > 0 and n = # of rotamers (CKS04)

⇒ Little hope for a fast algorithm that guarantees good solutions

Proposed Solutions

Local search

- Monte Carlo
- Simulated annealing
- Many others

Graph heuristics

- -Scwrl
- Dead-end elimination
- & others

Mathematical programming

- Semidefinite
- Linear/integer

(Xiang+01) (Lee+91, Kuhlman+00)

(Bower+97, Canutescu+03) (Desmet+92,...) (Samudrala+98, Bahadur+04)

(Chazelle, K, Singh, 04) (Althaus+00; Eriksson+01; KCS, 05)

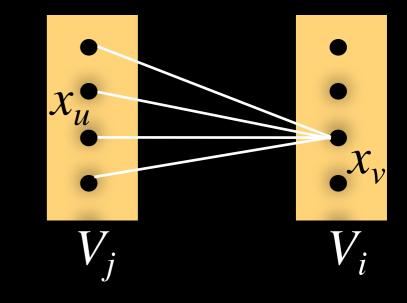
 \Rightarrow Flexible, practical framework to find optimal solutions.

Integer Programming

- General optimization framework:
 - Describe system by set of variables
 - Minimize a linear function.
 - **P**:= Subject to linear constraints (= or \geq).
 - While requiring the variables to be {0,1}.
- Computationally hard, but many advanced solver packages:
 - CPLEX, COIN-OR, ABACUS, FortMP, LINGO, ...

Integer Programming Formulation

Binary variables x_u for each node Binary variables x_{uv} for each edge



Minimize
$$\sum_{u} E_{u} x_{u} + \sum_{u,v} E_{uv} x_{uv}$$

subject to:

I.
$$\sum_{u \in V_j} x_u = 1$$
for every residue j2. $\sum_{u \in V_j} x_{uv} = x_v$ for every residue j, node

Why Integer Programming?

Optimal solutions

- Eliminate any effect of local search
- Help to improve energy functions
- Assess quality of heuristic methods

Very good IP solvers available

Ensemble of near-optimal solutions

- Several design candidates
- Confidence in solution

Linear Programming Relaxation

 $x_u, x_{uv} \in \{0, 1\}$

Integer Program

Enforcing binary constraints is hard.

Guarantees finding an optimal choice of rotamers.

 $0 \leq x_u, x_{uv} \leq 1$

Linear Program

Computationally easier.

May return fractional solution.

lf integral, done.

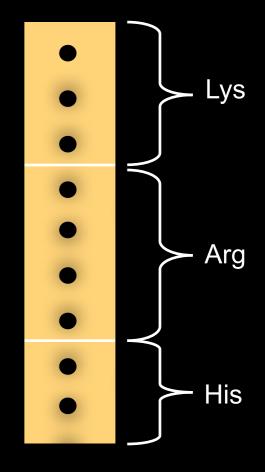
If not, either round or add new constraints

Design Problems

Want to design a sequence that will fold into a given backbone – Output is an amino acid sequence

Assumption: a sequence that fits well onto this backbone will fold into it

Put rotamers for several amino acids into each graph part



Redesign Tests

• Redesigned 25 protein cores

- Energy function best suited to solvent inaccessible residues
- \Rightarrow Fixed surface residues
- Group amino acids into classes:

AVILMF / HKR / DE / TQNS / WY / P / C / G

• Problem sizes:

- 11 to 124 residues
- 552 to 6,655 rotamers

Design Results

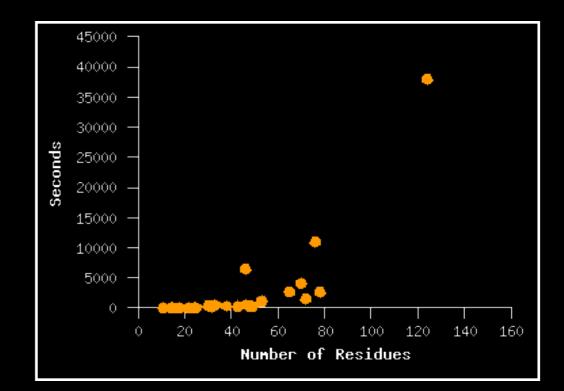
Redesigned 25 protein cores - 11 to 124 residues - 552 to 6,655 nodes

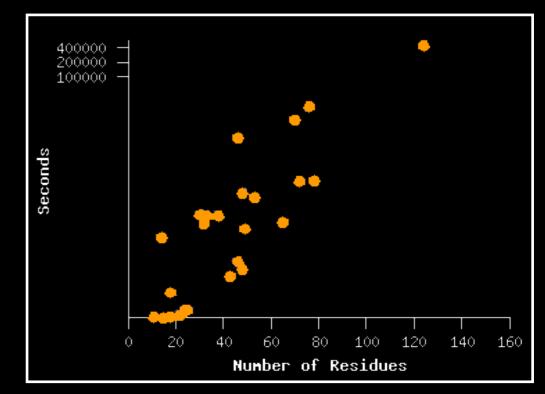
LP much slower (20 hours)

Only 6 integral out of 25

After DEE, can solve IP for remaining problems:

- one took 125 hours
- remaining 18 took 13 hours



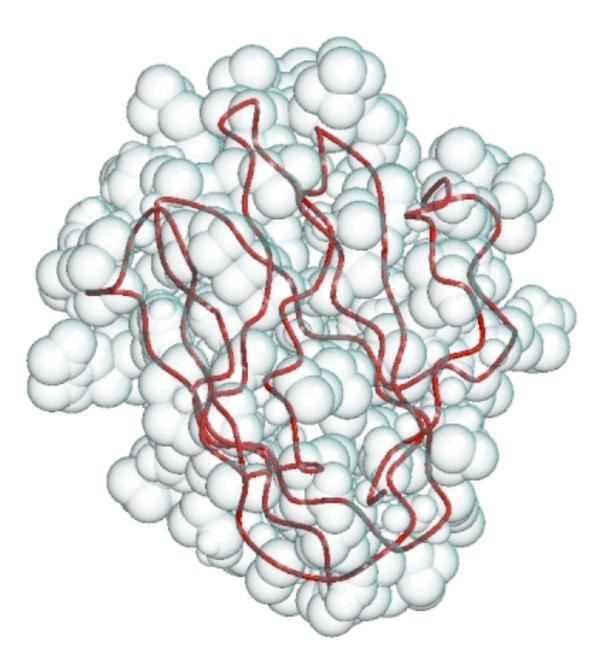


Near-Optimal Solutions

- Near-optimal solutions are useful:
 - Several candidates for protein design
 - Confidence in solution
- Can be found with integer program formulation
- To exclude m previously found solutions, add constraints:

$$\sum_{u \in S_k} x_u \leq p-1 \quad ext{for } k=1,\ldots,m$$
 where S_k is set of chosen nodes for solution k

Near-Optimal Solutions



laac - best 597 solutions.

Required only that some residue change

- Can also require, say, core residue change
- Or force several residues to move at once

Thus,

- Side-chain positioning is a biologically useful problem with a nice combinatorial problem behind it
- Linear / integer programming effective method for finding optimal side-chain positions
- Empirical difficulty ≠ theoretical hardness
- Design problems yield harder search problems than homology modeling