
Side-Chain
Positioning

CMSC 423

Backbone

Protein Structure

Backbone

Protein Structure

Side-chains

Side-chain Positioning
Given:
- amino acid sequence
- position of backbone in space

Find best 3D positions for side chains

“Best” = lowest-energy

Discrete formulation reasonable using
rotamers

Side-chain Positioning Problem

Given:
 • fixed backbone
 • amino acid sequence

Find the 3D positions for the

side-chains that minimize the
energy of the structure

Assume lowest energy is best

IILVPACW…

3 rotamers of Arg

Applications

Homology modeling
Rapid, low-cost structure determination

Protein design
Find sequence that folds into a given shape
e.g. redesign of zinc finger that folds without zinc,
(Dahiyat+97)

Ligand binding
e.g. novel binding pockets (Looger+03)

Subroutine in flexible backbone prediction
e.g. (Bradley+,2005)

A B C

D E F

G H I

J K L

Fig. 3

Graph Problem

Graph with part Vi for each side
chain:

node for each rotamer
edge {u,v} represents the
interaction between u and v

Weights:
E(u) = self-energy
E(u,v) = interaction energy

rotamer

residue

interaction

V1

V2

Graph Problem

Solution is one node from each part

Cost of solution is cost of induced
subgraph

Goal: pick one node from each
position to minimize the cost of the
induced subgraph

rotamer

residue

interaction

V1

V2

Hardness

NP-hard to approximate the minimum energy
within a factor of cn where c > 0 and n = # of
rotamers (CKS04)

⇒ Little hope for a fast algorithm that
guarantees good solutions

Proposed Solutions
Local search

Monte Carlo	
 (Xiang+01)

Simulated annealing 	
 (Lee+91, Kuhlman+00)

Many others

Graph heuristics
Scwrl 	
 (Bower+97, Canutescu+03)

Dead-end elimination	
 (Desmet+92,...)

& others	
 (Samudrala+98, Bahadur+04)

Mathematical programming
Semidefinite 	
 (Chazelle, K, Singh, 04)

Linear/integer 	
 (Althaus+00; Eriksson+01; KCS, 05)

⇒ Flexible, practical framework to find optimal solutions.

Integer Programming

•General optimization framework:
-Describe system by set of variables

•Computationally hard, but many advanced solver
packages:

CPLEX, COIN-OR, ABACUS, FortMP, LINGO, …

- Minimize a linear function.
- Subject to linear constraints (= or ≥).
- While requiring the variables to be {0,1}.

IP :=

Integer Programming Formulation

Binary variables xu for each node

Binary variables xuv for each edge
xu

xv
Vj Vi

∑

u∈Vj

xu = 1

∑

u∈Vj

xuv = xv

for every residue j

for every residue j, node v

1.

2.

∑

u

Euxu +

∑

u,v

EuvxuvMinimize

subject to:

Why Integer Programming?

Optimal solutions
Eliminate any effect of local search
Help to improve energy functions
Assess quality of heuristic methods

Very good IP solvers available

Ensemble of near-optimal solutions
Several design candidates
Confidence in solution

Linear Programming Relaxation

xu, xuv ∈ {0, 1}

Integer Program

Enforcing binary
constraints is hard.

Guarantees finding an
optimal choice of

rotamers.

0 ≤ xu, xuv ≤ 1

Linear Program

Computationally
easier.

May return fractional
solution.

If integral, done.

If not, either round or
add new constraints

Design Problems

Want to design a sequence that will fold
into a given backbone

Output is an amino acid sequence

Assumption: a sequence that fits well onto
this backbone will fold into it

Put rotamers for several amino acids into
each graph part

Lys

Arg

His

Redesign Tests
• Redesigned 25 protein cores

Energy function best suited to
solvent inaccessible residues

⇒Fixed surface residues

• Group amino acids into classes:

• Problem sizes:
11 to 124 residues
552 to 6,655 rotamers

AVILMF / HKR / DE / TQNS / WY / P / C / G

Design Results

Redesigned 25 protein cores
11 to 124 residues
552 to 6,655 nodes

LP much slower (20 hours)

Only 6 integral out of 25

After DEE, can solve IP for
remaining problems:

one took 125 hours

remaining 18 took 13 hours

Near-Optimal Solutions

•Near-optimal solutions are useful:
Several candidates for protein design
Confidence in solution

•Can be found with integer program formulation

•To exclude m previously found solutions, add constraints:

where Sk is set of chosen nodes for solution k

∑

u∈Sk

xu ≤ p − 1 for k = 1, . . . , m

Near-Optimal Solutions

⇦Required only that
some residue
change

•Can also require, say,
core residue change

•Or force several
residues to move at
once

1aac - best 597 solutions.

Thus,

•Side-chain positioning is a biologically useful problem with
a nice combinatorial problem behind it

•Linear / integer programming effective method for finding
optimal side-chain positions

•Empirical difficulty ≠ theoretical hardness

•Design problems yield harder search problems than
homology modeling

