
RNA Folding
CMSC 423

Lecture by Darya Filippova

RNA Folding

G C

CG

UA

A U

U A

C G

CG

AU

A U

G

G

G

U

A

A

A

A G C C

GGCU

U
A

A

A

G
A

C

C

G

G
U

C

U

U

U

A

CC

C

C

G
G

A

U

A

U

G

C

C
C

C

A

A

RNA is single stranded and folds up:
• G and C stick together
• A and U stick together

RNA Folding Rules

RNA folding rules:
1. If two bases are closer than 4 bases apart, they cannot

pair
2. Each base is matched to at most one other base
3. The allowable pairs are {U, A} and {C, G}
4. Pairs cannot “cross.”

G C

CG

UA

A U

U A

C G

CG

AU G CCG UAA UU AC G CG AU

No Crossings

If (i,j) and (k,m) are paired, we must have i < k < m < j.

Paired bases have to be nested.

i jk m

RNA Folding

Given: a string r = b1b2b3,...,bn with bi ∈ {A,C,U,G}
Find: the largest set of pairs S = {(i,j)}, where i,j ∈ {1,2,...,n}
that satisfies the RNA folding rules.

Goal: match as many bases as possible.

Subproblems

G CCG UUA UU AC G CG AU
1 j

G CCG UUA UU AC G CG AU
1 j

j is not paired
with anything

j is paired with
some t ≤ j -4

t

OPT(t+1, j-1)OPT(1, t-1)

OPT(1, j-1)

Recurrence

If j - i ≤ 4:

OPT (i, j) = max

(
OPT (i, j � 1)

maxt{1 +OPT (i, t� 1) +OPT (t+ 1, j � 1)

If j - i > 4:

In the 2nd case above, we try all possible t with which to pair j.
That is, t runs from i to j-4.

OPT (i, j) = 0

Order to solve the subproblems

• In what order should we solve the subproblems?

Order to solve the subproblems

• In what order should we solve the subproblems?

• What problems do we need to solve OPT(i,j)?

OPT(i,t-1) and OPT(t+1, j-1)
for every t between i and j

• In what sense are these problems “smaller?”

Order to solve the subproblems

• In what order should we solve the subproblems?

• What problems do we need to solve OPT(i,j)?

OPT(i,t-1) and OPT(t+1, j-1)
for every t between i and j

• In what sense are these problems “smaller?”

• They involve smaller intervals of the string:

We solve OPT(i,j) in order of increase value of j - i.

Filling in the matrix

i

j

n

1
n1

only use half: i < j

OPT(i,j)

Filling in the matrix

i

j

n

1
n1

in order of increasing j-i

Filling in the matrix

i

j

n

1
n1

in order of increasing j-i

Filling in the matrix

i

j

n

1
n1

in order of increasing j-i

Filling in the matrix

i

j

n

1
n1

in order of increasing j-i

Filling in the matrix

i

j

n

1
n1

in order of increasing j-i

Case 1

i

j

n

1
n1

OPT(i,j)

OPT(i,j-1)

OPT (i, j) = max

(
OPT (i, j � 1)
. . .

Case 1

i

j

n

1
n1

OPT(i,j)

OPT(i,j-1)

OPT (i, j) = max

(
OPT (i, j � 1)
. . .

Case 2

i

j

n

1
n1

OPT(i,j)

OPT(t+1,j-1)

OPT(i,t-1)

OPT (i, j) = max

(
. . .

maxt{1 + OPT (i, t� 1) + OPT (t + 1, j � 1)}

Case 2

i

j

n

1
n1

OPT(i,j)

OPT(t+1,j-1)

OPT(i,t-1)

OPT (i, j) = max

(
. . .

maxt{1 + OPT (i, t� 1) + OPT (t + 1, j � 1)}

Case 2

i

j

n

1
n1

OPT(i,j)

OPT(t+1,j-1)

OPT(i,t-1)

OPT (i, j) = max

(
. . .

maxt{1 + OPT (i, t� 1) + OPT (t + 1, j � 1)}

Code

def rnafold(rna):
 n = len(rna)
 OPT = make_matrix(n, n)
 Arrows = make_matrix(n, n)
 for k in xrange(5, n): # interval length
 for i in xrange(n-k): # interval start
 j = i + k # interval end
 best_t = OPT[i][j-1]
 arrow = -1
 for t in xrange(i, j):
 if is_complement(rna[t], rna[j]):
 val = 1 + \\

(OPT[i][t-1] if t > i else 0) + OPT[t+1][j-1]
 if val >= best_t: best_t, arrow = val, t
 OPT[i][j] = best_t
 Arrows[i][j] = arrow
 return OPT, Arrows

Backtrace code

def rna_backtrace(Arrows):
 Pairs = [] # holds the pairs in the optimal solution
 Stack = [(0, len(Arrows) - 1)] # tracks cells we have to visit
 while len(Stack) > 0:
 i, j = Stack.pop()
 if j - i <= 4: continue # if cell is base case, skip it
 # Arrow = -1 means we didn’t match j
 if Arrows[i][j] == -1:
 Stack.append((i, j - 1))
 else:
 t = Arrows[i][j]
 Pairs.append((t, j)) # save that j matched with t
 # add the two daughter problems
 if t > i: Stack.append((i, t - 1))
 Stack.append((t + 1, j - 1))
return Pairs

Subproblems, 2

• We have a subproblem for every interval (i,j)

• How many subproblems are there?

Subproblems, 2

• We have a subproblem for every interval (i,j)

• How many subproblems are there?

✓
n

2

◆
= O(n2)

Running Time

• O(n2) subproblems

• Each takes O(n) time to solve
(have to search over all possible choices of t)

• Total running time is O(n3).

Summary

• This is essentially “Nussinov’s algorithm,” which was
proposed for finding RNA structures in 1978.

• Same dynamic programming idea: write the answer to
the full problem in terms of the answer to smaller
problems.

• Still have an O(n2) matrix to fill.

• Main differences from sequence alignment:
• We fill in the matrix in a different order: entries (i,j) in order

of increasing j - i.
• We have to try O(n) possible subproblems inside the max.

This leads to an O(n3) algorithm.

Pseudoknots

(Staple & Butcher, PLoS Biol, 2005)

