RNA Folding

CMSC 423
Lecture by Darya Filippova

RNA Folding

RNA is single stranded and folds up:

- G and C stick together
- A and U stick together

RNA Folding Rules

RNA folding rules:

I. If two bases are closer than 4 bases apart, they cannot pair
2. Each base is matched to at most one other base
3. The allowable pairs are $\{\mathrm{U}, \mathrm{A}\}$ and $\{\mathrm{C}, \mathrm{G}\}$
4. Pairs cannot "cross."

No Crossings

If (i, j) and (k, m) are paired, we must have $i<k<m<j$.
Paired bases have to be nested.

RNA Folding

Given: a string $r=b_{1} b_{2} b_{3}, \ldots, b_{n}$ with $b_{i} \in\{\mathrm{~A}, \mathrm{C}, \mathrm{U}, \mathrm{G}\}$ Find: the largest set of pairs $S=\{(i, j)\}$, where $i, j \in\{1,2, \ldots, n\}$ that satisfies the RNA folding rules.

Goal: match as many bases as possible.

Subproblems

Recurrence

$$
\text { If } j-i \leq 4:
$$

$$
O P T(i, j)=0
$$

$$
\text { If } j-i>4:
$$

$$
O P T(i, j)=\max \left\{\begin{array}{l}
O P T(i, j-1) \\
\max _{t}\{1+O P T(i, t-1)+O P T(t+1, j-1)
\end{array}\right.
$$

In the 2 nd case above, we try all possible t with which to pair j. That is, t runs from i to $j-4$.

Order to solve the subproblems

- In what order should we solve the subproblems?

Order to solve the subproblems

- In what order should we solve the subproblems?
- What problems do we need to solve $\operatorname{OPT}(i, j)$?

```
OPT(i,t-I) and OPT(t+I,j-I)
for every t between i and j
```

- In what sense are these problems "smaller?"

Order to solve the subproblems

- In what order should we solve the subproblems?
- What problems do we need to solve $\operatorname{OPT}(i, j)$?

$$
\begin{aligned}
& O P T(i, t-I) \text { and } O P T(t+I, j-I) \\
& \text { for every } t \text { between } i \text { and } j
\end{aligned}
$$

- In what sense are these problems "smaller?"
- They involve smaller intervals of the string:

We solve $O P T(i, j)$ in order of increase value of j - i.

Filling in the matrix

only use half: i < j

Filling in the matrix

in order of increasing j -i

Filling in the matrix

in order of increasing j - i

Filling in the matrix

in order of increasing j -i

Filling in the matrix

in order of increasing j -i

Filling in the matrix

in order of increasing j - i

Case 1

$O P T(i, j)=\max \left\{\begin{array}{l}O P T(i, j-1) \\ \cdots\end{array}\right.$

Case 1

$O P T(i, j)=\max \left\{\begin{array}{l}O P T(i, j-1) \\ \cdots\end{array}\right.$

Case 2

$O P T(i, j)=\max \left\{\begin{array}{l}\ldots \\ \max _{t}\{1+O P T(i, t-1)+O P T(t+1, j-1)\}\end{array}\right.$

Case 2

$O P T(i, j)=\max \left\{\begin{array}{l}\ldots \\ \max _{t}\{1+O P T(i, t-1)+O P T(t+1, j-1)\}\end{array}\right.$

Case 2

$O P T(i, j)=\max \left\{\begin{array}{l}\ldots \\ \max _{t}\{1+O P T(i, t-1)+O P T(t+1, j-1)\}\end{array}\right.$

Code

```
def rnafold(rna):
    n = len(rna)
    OPT = make_matrix(n, n)
    Arrows = make_matrix(n, n)
    for k in xrange(5, n): # interval length
        for i in xrange(n-k): # interval start
        j = i + k # interval end
        best_t = OPT[i][j-1]
        arrow = -1
        for t in xrange(i, j):
            if is_complement(rna[t], rna[j]):
            val = 1 + \\
                            (OPT[i][t-1] if t > i else 0) + OPT[t+1][j-1]
            if val >= best_t: best_t, arrow = val, t
        OPT[i][j] = best_t
        Arrows[i][j] = arrow
    return OPT, Arrows
```


Backtrace code

```
def rna_backtrace(Arrows):
    Pairs = [] # holds the pairs in the optimal solution
    Stack = [(0, len(Arrows) - 1)] # tracks cells we have to visit
    while len(Stack) > 0:
        i, j = Stack.pop()
        if j - i <= 4: continue # if cell is base case, skip it
        # Arrow = -1 means we didn't match j
        if Arrows[i][j] == -1:
            Stack.append((i, j - 1))
        else:
            t = Arrows[i][j]
            Pairs.append((t, j)) # save that j matched with t
            # add the two daughter problems
                if t > i: Stack.append((i, t - 1))
                Stack.append((t + 1, j - 1))
return Pairs
```


Subproblems, 2

- We have a subproblem for every interval (i,j)
- How many subproblems are there?

Subproblems, 2

- We have a subproblem for every interval (i,j)
- How many subproblems are there?

$$
\binom{n}{2}=O\left(n^{2}\right)
$$

Running Time

- $\mathrm{O}\left(n^{2}\right)$ subproblems
- Each takes O(n) time to solve (have to search over all possible choices of t)
- Total running time is $O\left(n^{3}\right)$.

Summary

- This is essentially "Nussinov's algorithm," which was proposed for finding RNA structures in 1978.
- Same dynamic programming idea: write the answer to the full problem in terms of the answer to smaller problems.
- Still have an $O\left(n^{2}\right)$ matrix to fill.
- Main differences from sequence alignment:
- We fill in the matrix in a different order: entries (i,j) in order of increasing j - i.
- We have to try $O(n)$ possible subproblems inside the max. This leads to an $O\left(n^{3}\right)$ algorithm.

Pseudoknots

DA-R

E

F

C
hTR

(Staple \& Butcher, PLoS Biol, 2005)

