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RNA is single stranded and folds up:
• G and C stick together
• A and U stick together



RNA Folding Rules

RNA folding rules:
1. If two bases are closer than 4 bases apart, they cannot 

pair
2. Each base is matched to at most one other base
3. The allowable pairs are {U, A} and {C, G}
4. Pairs cannot “cross.”
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No Crossings

If (i,j) and (k,m) are paired, we must have i < k < m < j.

Paired bases have to be nested.

i jk m



RNA Folding

Given: a string r = b1b2b3,...,bn with bi ∈ {A,C,U,G}
Find: the largest set of pairs S = {(i,j)}, where i,j ∈ {1,2,...,n} 
that satisfies the RNA folding rules.

Goal: match as many bases as possible.



Subproblems

G CCG UUA UU AC G CG AU
1 j

G CCG UUA UU AC G CG AU
1 j

j is not paired 
with anything

j is paired with 
some t ≤ j -4

t

OPT(t+1, j-1)OPT(1, t-1)

OPT(1, j-1)



Recurrence

If j - i ≤ 4:

OPT (i, j) = max

(
OPT (i, j � 1)

maxt{1 +OPT (i, t� 1) +OPT (t+ 1, j � 1)

If j - i > 4:

In the 2nd case above, we try all possible t with which to pair j.
That is, t runs from i to j-4.

OPT (i, j) = 0



Order to solve the subproblems

• In what order should we solve the subproblems?
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Order to solve the subproblems

• In what order should we solve the subproblems?

• What problems do we need to solve OPT(i,j)?

OPT(i,t-1) and OPT(t+1, j-1) 
for every t between i and j

• In what sense are these problems “smaller?”

• They involve smaller intervals of the string:

We solve OPT(i,j) in order of increase value of j - i.



Filling in the matrix
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Code

def rnafold(rna):
   n = len(rna)
   OPT = make_matrix(n, n)
   Arrows = make_matrix(n, n)
   for k in xrange(5, n):     # interval length
      for i in xrange(n-k):  # interval start
         j = i + k          # interval end
         best_t = OPT[i][j-1]
         arrow = -1
         for t in xrange(i, j):
            if is_complement(rna[t], rna[j]):
               val = 1 + \\

(OPT[i][t-1] if t > i else 0) + OPT[t+1][j-1]
               if val >= best_t: best_t, arrow = val, t
         OPT[i][j] = best_t
         Arrows[i][j] = arrow
    return OPT, Arrows



Backtrace code

def rna_backtrace(Arrows):
    Pairs = []  # holds the pairs in the optimal solution
    Stack = [(0, len(Arrows) - 1)]  # tracks cells we have to visit
    while len(Stack) > 0:
        i, j = Stack.pop()
        if j - i <= 4: continue      # if cell is base case, skip it
        # Arrow = -1 means we didn’t match j
        if Arrows[i][j] == -1:
            Stack.append((i, j - 1))
        else:
            t = Arrows[i][j]
            Pairs.append((t, j))  # save that j matched with t
            # add the two daughter problems
            if t > i: Stack.append((i, t - 1))
            Stack.append((t + 1, j - 1))
return Pairs
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• We have a subproblem for every interval (i,j)
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Running Time

• O(n2) subproblems

• Each takes O(n) time to solve
(have to search over all possible choices of t)

• Total running time is O(n3).



Summary

• This is essentially “Nussinov’s algorithm,” which was 
proposed for finding RNA structures in 1978.

• Same dynamic programming idea: write the answer to 
the full problem in terms of the answer to smaller 
problems.

• Still have an O(n2) matrix to fill.

• Main differences from sequence alignment:
• We fill in the matrix in a different order: entries (i,j) in order 

of increasing j - i.
• We have to try O(n) possible subproblems inside the max.

This leads to an O(n3) algorithm.



Pseudoknots

(Staple & Butcher, PLoS Biol, 2005)


