Project Part 2a: DS for Genome Browser

- Biologists want to be able to browse and search all the features of the genome
- We're considering only genes, but there are lots more: implementation is similar
- Examples:
- ENCODE region browser
- Bacterial Browser
- USCD Genome Browser

Project Part 2b: DS for comparing genomes

- Overtime, genes can move in genome
- MUMMER is a tool developed here to compare two genomes:
- Places a dot every place a sequence in 1 genome is found in the other genome
- Uses suffix trees (which we'll talk about soon)
- Project assumes you're given the mapping between places (genes) on the genome \& you have to answer region queries

MUMMER: another example

- Genomes more divergent (more shuffling)
- Xanthomonas
- Bacteria
- Common plant pathogen

Range Trees

1-Dimensional Range Trees

- Suppose you have "points" in 1-dimension (aka numbers)
- Want to answer range queries: "Return all keys between x_{1} and x_{2}."
- How could you solve this?

Balanced Binary Search Tree

Range Queries on Binary Search Trees

Assume all data are in the leaves

Search for x_{1} and x_{2}

Let $x_{\text {split }}$ be the node were the search paths diverge

Output leaves in the right subtrees of nodes on the path from $x_{\text {split }}$ to x_{1}

Output leaves in the left subtrees of nodes on the path from $x_{\text {split }}$ to x_{2}

OneDRange(T, x1, x2):
// walk until we find $x_{\text {split }}$
while not isLeaf(T) and ($x_{2} \leq T$.data or $x_{1}>T$.data):
if $\mathrm{x}_{2} \leq \mathrm{T}$.data:
$T=T . l e f t$
else:
T = T.right
if isLeaf(T):
if $\mathrm{x}_{1} \leq \mathrm{T}$. data $\leq \mathrm{x}_{2}$: output(T.data)
else:
$\mathrm{v}=\mathrm{T}$
// walk down from $\mathrm{x}_{\text {split }}$ to x_{1}
10: while not isLeaf(v):
if $\mathrm{x}_{1} \leq \mathrm{v}$.data:
output_subtree(v.right) $\mathrm{v}=\mathrm{v} . \operatorname{left}$
else:
15: \quad v $=$ v.right
// repeat lines 10-15,
// except walk down the path to $x 2$.
// ... code not shown ...

1-D Query Time

- $\mathrm{O}(\mathrm{k}+\log \mathrm{n})$, where k is the number of points output.
- Tree is balanced, so depth is $\mathrm{O}(\log \mathrm{n})$
- Length of paths to $x 1$ and $x 2$ are $O(\log n)$
- Therefore visit $\mathrm{O}(\log n)$ nodes to find the roots of subtrees to output
- Traversing the subtrees is linear, $\mathrm{O}(\mathrm{k})$, in the number of items output.

How would you generalize to $2 d$?

2d Range Trees

- Treat range query as 2 nested one-dimensional queries:
- [$\left.\mathrm{x}_{1}, \mathrm{x}_{2}\right]$ by $\left[\mathrm{y}_{1}, \mathrm{y}_{2}\right]$
- First ask for the points with x-coordinates in the given range $\left[\mathrm{x}_{1}, \mathrm{x}_{2}\right]=>$ a set of subtrees \triangle
- Instead of all points in these subtrees, only want those that fall in $\left[y_{1}, y_{2}\right]$
$\mathrm{P}(\mathrm{u})$ is the set of points under u

We store those points in another tree $\mathrm{Y}(\mathrm{u})$, keyed by the y-dimension

2-D Range Trees, Cont.

Every node has a tree
associated with it:
multilevel data structure

Range Trees, continued.

2d-range tree space requirements

- Sum of the sizes of $Y(u)$ for u at a given depth is $O(n)$
- Each point stored in the $\mathrm{Y}(\mathrm{u})$ tree for at most one node at a given depth
- Since main tree is balanced, has $\mathrm{O}(\log \mathrm{n})$ depth
- Meaning total space requirement is $\mathrm{O}(\mathrm{n} \log \mathrm{n})$

2d Range Tree Range Searches

1. First find trees that match the x -constraint;
2. Then output points in those subtrees that match the y constraint (by 1-d range searching the associated $\mathrm{Y}(\mathrm{u})$ trees)

- Step 1 will return at most $O(\log n)$ subtrees to process.
- Step 2 will thus perform the following $O(\log n)$ times:
- Range search the $Y(u)$ tree. This takes $O\left(\log n+k_{u}\right)$, where k_{u} is the number of points output for that $Y(u)$ tree.
- Total time is $\sum_{\mathrm{u}} \mathrm{O}\left(\log \mathrm{n}+\mathrm{k}_{\mathrm{u}}\right)$ where u ranges over $\mathrm{O}(\log \mathrm{n})$ nodes. Thus the total time is $\mathrm{O}\left(\log ^{2} \mathrm{n}+\mathrm{k}\right)$.

2d Range Tree Demo

kd-tree vs. Range Tree

- 2d kd-tree:
- \quad Space $=O(n)$
- \quad Range Query Time $=O(k+\sqrt{n})$
- Inserts O(log n)
- 2d Range Tree:
- \quad Space $=O(n \log n)$
- \quad Range Query Time $=\mathrm{O}\left(\mathrm{k}+\log ^{2} \mathrm{n}\right)$
- Inserts O($\log ^{2} n$)

How would you extend this to >2 dimensions?

Range Trees for $\mathrm{d}>2$

- Now, your associated trees $\mathrm{Y}(\mathrm{u})$ themselves have associated trees $\mathrm{Z}(\mathrm{v})$ and so on:

Searching: find $\mathrm{O}(\log \mathrm{n})$ nodes in first tree for each of them, find another $\mathrm{O}(\log \mathrm{n})$ sets for each of them find another $\log \mathrm{n}$ sets

Leads to $O\left(k+\log ^{d} n\right)$ search time Space: $O\left(n \log ^{d-1} n\right)$ space

Fractional Cascading Speed-up: Idea

- Suppose you had two sorted arrays $\mathrm{A}_{1} \mathrm{~A}_{2}$
- Elements in A_{2} are subset of those in A_{1}
- Want to range search in both arrays with the same range: [$\mathrm{x}_{1}, \mathrm{x}_{2}$]
- Simple:
- Binary Search to find x_{1} in both A_{1} and A_{2}
- Walk along array until you pass x_{2}
- O(log n) time for each Binary Search,
- have to do it twice though

Can do better:

- Since A_{2} subset of A_{1} :
- Keep pointer at each element u of A_{1} pointing to the smallest element of A_{2} that is $\geq u$.

3	7	11	12	15	18	30	32	41	49
		15	30	32	41	49			

- After Binary Search in A_{1}, use pointer to find where to start in A_{2}
- Can do similar in Range Trees to eliminate an $\mathrm{O}(\log \mathrm{n})$ factor (see next slides)

Fractional Cascading in Range Trees

Instead of an aux. tree, we store an array, sorted by Y-coord. At $x_{\text {split, }}$ we do a binary search for y_{1}. As we continue to search for x_{1} and x_{2}, we also use pointers to keep track of the result of a binary search for y_{1} in each of the arrays along the path.

(Only subset of pointers are shown)

Fractional Cascading Search

- RangeQuery([x1,x2] by [y1,y2]):
- Search for $\mathrm{x}_{\text {split }}$
- Use binary search to find the first point in $\mathrm{A}\left(\mathrm{x}_{\text {split }}\right)$ that is larger that y_{1}.
- Continue searching for x_{1} and x_{2}, following the now diverged paths
- Let $u_{1}-u_{2}-u_{3}-u_{k}$ be the path to x_{1}. While following this path, use the "cascading" pointers to find the first point in each $\mathrm{A}\left(u_{\mathrm{i}}\right)$ that is larger than y_{1}. [similarly with the path $\mathrm{v}_{1}-\mathrm{v}_{2}--\mathrm{v}_{\mathrm{m}}$ to x_{2}]
- If a child of u_{i} or v_{i} is the root of a subtree to output, then use a cascading pointer to find the first point larger than y_{1}, output all points until you pass y_{2}.

Fractional Cascading: Runtime

- Instead of $\mathrm{O}(\log \mathrm{n})$ binary searches, you perform just one
- Therefore, $\mathrm{O}\left(\log ^{2} \mathrm{n}\right)$ becomes $\mathrm{O}(\log \mathrm{n})$
- 2d-rectangle range queries in $\mathrm{O}(\log \mathrm{n}+\mathrm{k})$ time
- In d dimensions: $\mathrm{O}\left(\log ^{\mathrm{d}-1} \mathrm{n}+\mathrm{k}\right)$

