
Project Part 2a: DS for Genome Browser

• Biologists want to be able to
browse and search all the
features of the genome

• We’re considering only genes,
but there are lots more:
implementation is similar

• Examples:

- ENCODE region browser

- Bacterial Browser

- USCD Genome Browser

Project Part 2b: DS for comparing genomes

• Overtime, genes can
move in genome

• MUMMER is a tool
developed here to
compare two genomes:

- Places a dot every place a
sequence in 1 genome is
found in the other
genome

- Uses suffix trees (which
we’ll talk about soon)

• Project assumes you’re
given the mapping
between places (genes)
on the genome & you
have to answer region
queries

MUMMER: another example

• Genomes more
divergent (more
shuffling)

• Xanthomonas

- Bacteria

- Common plant
pathogen

Range Trees

1-Dimensional Range Trees

• Suppose you have “points” in 1-dimension (aka
numbers)

• Want to answer range queries: “Return all keys
between x1 and x2.”

• How could you solve this?

Balanced Binary Search Tree

Range Queries on Binary Search Trees

x1 x2

xsplit

Assume all data are in the leaves

Search for x1 and x2

Let xsplit be the node were the search
paths diverge

Output leaves in the right subtrees of
nodes on the path from xsplit to x1

Output leaves in the left subtrees of
nodes on the path from xsplit to x2

OneDRange(T, x1, x2):
 // walk until we find xsplit
 while not isLeaf(T) and (x2 ≤ T.data or x1 > T.data):
 if x2 ≤ T.data:
 T = T.left
 else:
 T = T.right
 if isLeaf(T):
 if x1 ≤ T.data ≤ x2: output(T.data)
 else:
 v = T
 // walk down from xsplit to x1
10: while not isLeaf(v):
 if x1 ≤ v.data:
 output_subtree(v.right)
 v = v.left
 else:
15: v = v.right

 // repeat lines 10-15,
 // except walk down the path to x2.
 // ... code not shown ...

x2x1 T.data

1-D Query Time

• O(k + log n), where k is the number of points output.

- Tree is balanced, so depth is O(log n)

- Length of paths to x1 and x2 are O(log n)

- Therefore visit O(log n) nodes to find the roots of subtrees to
output

- Traversing the subtrees is linear, O(k), in the number of
items output.

How would you generalize to 2d?

2d Range Trees
• Treat range query as 2 nested one-dimensional

queries:

- [x1,x2] by [y1,y2]

- First ask for the points with x-coordinates in the given
range [x1,x2] => a set of subtrees

- Instead of all points in these subtrees, only want those
that fall in [y1,y2]

u

P(u)

v

Y(u)
P(u) is the set of points
under u

We store those points in
another tree Y(u), keyed
by the y-dimension

2-D Range Trees, Cont.

u

P(u)

v

v

v

v

v

v

Every node has a tree
associated with it:
multilevel data
structure

Range Trees, continued.

x

x

x

x

x
x

x

x

x

x

x

x

x
x

x

2d-range tree space requirements

• Sum of the sizes of Y(u) for u at a given depth is O(n)

- Each point stored in the Y(u) tree for at most one node at a
given depth

• Since main tree is balanced, has O(log n) depth

• Meaning total space requirement is O(n log n)

2d Range Tree Range Searches

1. First find trees that match the x-constraint;
2. Then output points in those subtrees that match the y-

constraint (by 1-d range searching the associated Y(u) trees)

• Step 1 will return at most O(log n) subtrees to process.

• Step 2 will thus perform the following O(log n) times:

- Range search the Y(u) tree. This takes O(log n + ku), where ku

is the number of points output for that Y(u) tree.

• Total time is ∑u O(log n + ku) where u ranges over
O(log n) nodes. Thus the total time is O(log2 n + k).

2d Range Tree Demo

kd-tree vs. Range Tree

• 2d kd-tree:

- Space = O(n)

- Range Query Time = O(k + √n)

- Inserts O(log n)

• 2d Range Tree:

- Space = O(n log n)

- Range Query Time = O(k+ log2 n)

- Inserts O(log2 n)

How would you extend this to
> 2 dimensions?

 Range Trees for d > 2

• Now, your associated trees Y(u) themselves have
associated trees Z(v) and so on:

u

v

v

v

v

Searching: find O(log n) nodes in first tree
for each of them, find another O(log n) sets
for each of them find another log n sets

Leads to O(k+ logd n) search time
Space: O(n logd-1 n) space

Fractional Cascading Speed-up: Idea

• Suppose you had two sorted arrays A1 A2

- Elements in A2 are subset of those in A1

- Want to range search in both arrays with the same range:
[x1,x2]

• Simple:

- Binary Search to find x1 in both A1 and A2

- Walk along array until you pass x2

• O(log n) time for each Binary Search,

- have to do it twice though

Can do better:

• Since A2 subset of A1:

- Keep pointer at each element u of A1 pointing to the
smallest element of A2 that is ≥ u.

- After Binary Search in A1 , use pointer to find where to
start in A2

• Can do similar in Range Trees to eliminate an
O(log n) factor (see next slides)

3 7 11 12 15 18 30 32 41 49

7 15 30 32 41 49

Fractional Cascading in Range Trees

3 7 11 12 15 18 30 32 41 49

7 15 30 32 41

x1

x2

xsplit A(xsplit) =

3 11 12 18 49

3 12 11 18 497 32 41 15 30

7 32 41 15 30 3 12 11 49 18

11 497 32

(Only subset of pointers are shown)

Instead of an aux. tree, we store an array, sorted by Y-coord.
At xsplit, we do a binary search for y1. As we continue to search
for x1 and x2, we also use pointers to keep track of the result of
a binary search for y1 in each of the arrays along the path.

Fractional Cascading Search

• RangeQuery([x1,x2] by [y1,y2]):

- Search for xsplit

- Use binary search to find the first point in A(xsplit) that is
larger that y1.

- Continue searching for x1 and x2, following the now
diverged paths

- Let u1--u2--u3--uk be the path to x1. While following this
path, use the “cascading” pointers to find the first point
in each A(ui) that is larger than y1. [similarly with the
path v1--v2--vm to x2]

- If a child of ui or vi is the root of a subtree to output, then
use a cascading pointer to find the first point larger than
y1, output all points until you pass y2.

Fractional Cascading: Runtime

• Instead of O(log n) binary searches, you perform
just one

• Therefore, O(log2 n) becomes O(log n)

• 2d-rectangle range queries in O(log n + k) time

• In d dimensions: O(logd-1 n + k)

