
Project Part 2a: DS for Genome Browser

• Biologists want to be able to 
browse and search all the 
features of the genome

• We’re considering only genes, 
but there are lots more: 
implementation is similar

• Examples:

- ENCODE region browser

- Bacterial Browser

- USCD Genome Browser



Project Part 2b: DS for comparing genomes

• Overtime, genes can 
move in genome

• MUMMER is a tool 
developed here to 
compare two genomes:

- Places a dot every place a 
sequence in 1 genome is 
found in the other 
genome

- Uses suffix trees (which 
we’ll talk about soon)

• Project assumes you’re 
given the mapping 
between places (genes) 
on the genome & you 
have to answer region 
queries



MUMMER: another example

• Genomes more 
divergent (more 
shuffling)

• Xanthomonas

- Bacteria

- Common plant 
pathogen



Range Trees



1-Dimensional Range Trees

• Suppose you have “points” in 1-dimension (aka 
numbers)

• Want to answer range queries: “Return all keys 
between x1 and x2.”

• How could you solve this?

Balanced Binary Search Tree



Range Queries on Binary Search Trees

x1 x2

xsplit

Assume all data are in the leaves

Search for x1 and x2

Let xsplit be the node were the search 
paths diverge

Output leaves in the right subtrees of 
nodes on the path from xsplit to x1

Output leaves in the left subtrees of 
nodes on the path from xsplit to x2



OneDRange(T, x1, x2):
  // walk until we find xsplit
  while not isLeaf(T) and (x2 ≤ T.data or x1 > T.data):
     if x2 ≤ T.data:
       T = T.left
     else:
       T = T.right
  if isLeaf(T):
    if x1 ≤ T.data ≤ x2: output(T.data)
  else:
    v = T
    // walk down from xsplit to x1
10: while not isLeaf(v):
      if x1 ≤ v.data:
        output_subtree(v.right)
        v = v.left
      else:
15:     v = v.right

    // repeat lines 10-15, 
    // except walk down the path to x2.
    // ... code not shown ...

x2x1 T.data



1-D Query Time

• O(k + log n), where k is the number of points output.

- Tree is balanced, so depth is O(log n)

- Length of paths to x1 and x2 are O(log n)

- Therefore visit O(log n) nodes to find the roots of subtrees to 
output

- Traversing the subtrees is linear, O(k), in the number of 
items output.



How would you generalize to 2d?



2d Range Trees
• Treat range query as 2 nested one-dimensional 

queries: 

- [x1,x2] by [y1,y2]

- First ask for the points with x-coordinates in the given 
range [x1,x2] => a set of subtrees

- Instead of all points in these subtrees, only want those 
that fall in [y1,y2]

u

P(u)

v

Y(u)
P(u) is the set of points 
under u

We store those points in 
another tree Y(u), keyed 
by the y-dimension



2-D Range Trees, Cont.

u

P(u)

v

v

v

v

v

v

Every node has a tree 
associated with it:
multilevel data 
structure



Range Trees, continued.
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2d-range tree space requirements

• Sum of the sizes of Y(u) for u at a given depth is O(n)

- Each point stored in the Y(u) tree for at most one node at a 
given depth

• Since main tree is balanced, has O(log n) depth

• Meaning total space requirement is O(n log n)



2d Range Tree Range Searches

1. First find trees that match the x-constraint; 
2. Then output points in those subtrees that match the y-

constraint (by 1-d range searching the associated Y(u) trees)

• Step 1 will return at most O(log n) subtrees to process.

• Step 2 will thus perform the following O(log n) times:

- Range search the Y(u) tree. This takes O(log n + ku), where ku 

is the number of points output for that Y(u) tree.

• Total time is ∑u O(log n + ku) where u ranges over 
O(log n) nodes. Thus the total time is O(log2 n + k).



2d Range Tree Demo



kd-tree vs. Range Tree

• 2d kd-tree:

- Space = O(n)

- Range Query Time = O(k + √n)

- Inserts O(log n)

• 2d Range Tree:

- Space = O(n log n)

- Range Query Time = O(k+ log2 n) 

- Inserts O(log2 n)



How would you extend this to 
> 2 dimensions?



 Range Trees for d > 2

• Now, your associated trees Y(u) themselves have 
associated trees Z(v) and so on:

u

v

v

v

v

Searching: find O(log n) nodes in first tree 
for each of them, find another O(log n) sets
for each of them find another log n sets

Leads to O(k+ logd n) search time
Space: O(n logd-1 n) space



Fractional Cascading Speed-up: Idea

• Suppose you had two sorted arrays A1 A2

- Elements in A2 are subset of those in A1

- Want to range search in both arrays with the same range: 
[x1,x2]

• Simple: 

- Binary Search to find x1 in both A1 and A2

- Walk along array until you pass x2

• O(log n) time for each Binary Search, 

- have to do it twice though



Can do better:

• Since A2 subset of A1:

- Keep pointer at each element u of A1 pointing to the 
smallest element of A2 that is ≥ u.

- After Binary Search in A1 , use pointer to find where to 
start in A2

• Can do similar in Range Trees to eliminate an
O(log n) factor (see next slides)

3 7 11 12 15 18 30 32 41 49

7 15 30 32 41 49



Fractional Cascading in Range Trees

3 7 11 12 15 18 30 32 41 49

7 15 30 32 41

x1

x2

xsplit A(xsplit) =

3 11 12 18 49

3 12 11 18 497 32 41 15 30

7 32 41 15 30 3 12 11 49 18

11 497 32

(Only subset of pointers are shown)

Instead of an aux. tree, we store an array, sorted by Y-coord. 
At xsplit, we do a binary search for y1. As we continue to search 
for x1 and x2, we also use pointers to keep track of the result of 
a binary search for y1 in each of the arrays along the path.



Fractional Cascading Search

• RangeQuery([x1,x2] by [y1,y2]):

- Search for xsplit

- Use binary search to find the first point in A(xsplit) that is 
larger that y1. 

- Continue searching for x1 and x2, following the now 
diverged paths

- Let u1--u2--u3--uk be the path to x1. While following this 
path, use the “cascading” pointers to find the first point 
in each A(ui) that is larger than y1. [similarly with the 
path v1--v2--vm to x2]

- If a child of ui or vi is the root of a subtree to output, then 
use a cascading pointer to find the first point larger than 
y1, output all points until you pass y2.



Fractional Cascading: Runtime

• Instead of O(log n) binary searches, you perform 
just one

• Therefore, O(log2 n) becomes O(log n)

• 2d-rectangle range queries in O(log n + k) time

• In d dimensions: O(logd-1 n + k)


