
Python
Carl Kingsford - 648b

Basic Structure

Python is an interpreted language (like Perl).

Programs are in files with the .py extension.

Programs should start with a “#!” line:

#!/usr/bin/env python

Programs are executed from top to bottom.

Advanced: it’s strongly dynamically typed (values have a
fixed type, but variables can change type on the fly.)

Most unusual syntax: indenting and newlines are important.

Unlike Perl, there are no { } characters to indicate the start
and end of a block. That is done through indenting.

Interactive Mode

The command “python” will start an interactive
python session:

$ python
Python 2.6.1 (r261:67515, Jun 24 2010, 21:47:49)
[GCC 4.2.1 (Apple Inc. build 5646)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>

You can enter any python commands here.

The most important one is help(x), which will show
you detailed help on function (or type or class) x.

Use Ctrl-D or quit() to exit.

Example
#!/usr/bin/env python

import sys
import seq

def remove_gap(s):
 return s.replace('-','')

S1 = seq.read_fasta(sys.argv[1])
S2 = seq.read_fasta(sys.argv[2])

print sys.argv[1]
print sys.argv[2]

SD1 = dict((s.name, s) for s in S1)
SD2 = dict((s.name, s) for s in S2)

assert len(SD1) == len(SD2)

for s in SD1.itervalues():
 if s.seq != SD2[s.name].seq:
 print 'DISAGREE:', s.name
 print s.seq
 print SD2[s.name].seq
 if s.seq == SD2[s.name].seq:
 print 'AGREE:', s.name

Import some libraries (sys is a
standard one; seq is one I wrote)

Define a function

Call the function “read_fasta” in
the seq library.

Print some info to the screen

Create some dictionary data
structures (called hashes in Perl)
that map sequence names to
DNA sequences.

For every sequence in the
dictionary SD1, check that the
corresponding sequence in SD2
matches

Example 2

def random_order(n):

 “Create random mapping between [n] and [n]”

 import random

 R = range(n)

 random.shuffle(R)

 return dict(enumerate(R))

A function that takes 1
parameter “Docstring” that

documents what
the function does.

Load the “random” library.

R = [0, 1, 2, 3, ..., n-1]
The list R is randomly
shuffled to be something
like [7, 8, 10, n-1, ..., 4]

Turns shuffled list into a
list of pairs:
[(0, 7), (1, 8), (2, 10), ...]

Turns list of pairs
[(i,j)] into a mapping
from i → j

Data Structures

Main Idea: Sequences

Built-in Basic Data Types

str = string (delimit with ‘xyz’ or “xyz”)
>>> str(10)
'10'

int = arbitrary-sized integer (see also long)
>>> 7**73
49221735352184872959961855190338177606846542622561400857
262407L

float = floating point number
>>> 1/2
0
>>> 1.0/2
0.5

bool = True or False
>>> bool(10)
True
>>> bool(0)
False

Collection Data Types

list = mutable list
>>> ['a','b',10,10,7]
['a', 'b', 10, 10, 7]

tuple = frozen list (can’t change)
>>> ('a','b',10, 10,7)
('a', 'b', 10, 10, 7)

dict = dictionary, aka hash
>>> {'a':7, 'b':10, 13:2}
{'a': 7, 'b': 10, 13: 2}

set = mutable set of elements
>>> set(['a','b','b',10])
set(['a', 10, 'b'])

frozenset = frozen set of elements
>>> frozenset(['a','b','b',10])
frozenset(['a', 10, 'b'])

Collections

Can contain items of different type.

Can nest them: [(1, 2), (3, 4), [5, 6, 7, 8], {'a': 2}]

Sets do not preserve order.

Dictionary keys must be constant, but can be
frozenset or tuples:

>>> A = {}
>>> A[(1,2)] = 10
>>> A[frozenset([2,2,2,2])] = 13
>>> A
{(1, 2): 10, frozenset([2]): 13}
>>> A[[10,2]] = 3
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: unhashable type: 'list'

Slicing Lists and Strings

Can extract subranges from lists and strings:

s = “abcdef”
s[0] == “a”
s[2:4] == “cd”
s[2:] == “cdef”
s[-1] == “f”

Note: range i:j gives characters i, i+1,..., j-1.

For range i:j
if i is omitted, it’s assumed to be 0.
if j is omitted, it’s assumed to be len + 1.

Assignment works for lists (but not strings or tuples):
L[2:4] = [7,8,9,10] → [1, 2, 7, 8, 9, 10, 5]

L = [1,2,3,4,5]
L[3:7] == [4,5]
L[:2] == [1,2]
T = (7,8,9,10)
T[1:3] == (8,9)negative numbers

count from the end.

For Loops

For loops always loop over a sequence.

Collections are sequences.

for x in [1,2,3,4]:
print x

for key in {‘a’:10,’b’:100}:
print key

for i in set([1,2,3,2]):
print i

Generate sequences:

range(100) = [0,1,2,...,99]
range(10,50) = [10,11,...,49]
range(10,20,2) = [10, 12, 14, 16, 18]

Prints 1 2 3 4

Prints a b OR b a

Prints 1 2 3 in some order

for i in range(32):
print 2**i

Local Alignment Python Code

def local_align(x, y, score=ScoreParam(-7, 10, -5)):
 """Do a local alignment between x and y"""
 # create a zero-filled matrix
 A = make_matrix(len(x) + 1, len(y) + 1)

 best = 0
 optloc = (0,0)

 # fill in A in the right order
 for i in xrange(1, len(x)):
 for j in xrange(1, len(y)):

 # the local alignment recurrance rule:
 A[i][j] = max(
 A[i][j-1] + score.gap,
 A[i-1][j] + score.gap,
 A[i-1][j-1] + (score.match if x[i] == y[j] else score.mismatch),
 0
)

 # track the cell with the largest score
 if A[i][j] >= best:
 best = A[i][j]
 optloc = (i,j)

 # return the opt score and the best location
 return best, optloc

List Comprehensions

Can construct lists from rules:

L = [i**2 + j**2 for i in range(10)
for j in range(10)

if i >= j]

>>> L
[1, 4, 5, 9, 10, 13, 16, 17, 20, 25, 25, 26, 29, 34, 41, 36, 37, 40, 45, 52, 61, 49, 50, 53, 58, 65,
74, 85, 64, 65, 68, 73, 80, 89, 100, 113, 81, 82, 85, 90, 97, 106, 117, 130, 145]
>>> set(L)
set([1, 130, 4, 5, 9, 10, 13, 16, 17, 20, 25, 26, 29, 34, 36, 37, 40, 41, 45, 49, 50, 52, 53, 58,
61, 64, 65, 68, 73, 74, 80, 81, 82, 85, 89, 90, 97, 100, 145, 106, 113, 117])

General syntax: [EXPR for ... if ... for ... if]

L = []
for i in range(10):

for j in range(10):
if i >= j:

L.append(i**2 + j**2)

def make_matrix(sizex, sizey):
 """Creates a sizex by sizey matrix filled with zeros."""
 return [[0]*sizey for i in xrange(sizex)]

class ScoreParam:
 """The parameters for an alignment scoring function"""
 def __init__(self, gap, match, mismatch):
 self.gap = gap
 self.match = match
 self.mismatch = mismatch

Local Alignment Python Code

Generators

Often it is wasteful to create a list in memory:

for i in range(2**20):
print i

for i in xrange(2**20):
print i

Generators are rules that generate a sequence:

(i**2 + j**2 for i in range(10)
for j in range(10)

if i >= j)

Generator has same syntax as list comprehension, but will
only create an item as you iterate through it.

The only thing you can do with generators is iterate through
them.

First creates a list of ≈ 1 million
items, then iterates through it.

Creates a generator for the list
and iterates through it.

Composing Generators

Generators and other sequences can be passed to functions
that create new generators:

G = (i**2 + j**2 for i in xrange(10) for j in xrange(10) if i >= j)
for i in sorted(G):

print i

s = “abcd”
for c in reversed(s):

print c

L = [“a”, “b”, “c”, “d”]
for (i, c) in enumerate(L):

print i, c

Q = [“e”, “f”, “g”, “h”]
for (a,b) in zip(Q, L):

print a,b

L → ((0, “a”), (1, “b”), (2, “c”), (3, “d”))

s → (‘d’, ‘c’, ‘b’, ‘a’)

G is a saved generator
sorted(G) returns the same
sequence as G, but sorted

((“e”, “a”), (“f”, “b”), (“g”, “c”), (“h”, “d”))

Organizing Code

Functions
Functions can be defined using the syntax:

def name(a, b, c=True, d=2*10):
BODY

The syntax “= EXPR” after a parameter gives the parameter’s
default value.

Functions can be called using:

name(10,20, False)
name(10, b=20, d=32)
name(b=10, a=20)

Values can be returned from functions using the return
statement:

def sum(S):
s = 0.0
for i in S: s = s + i
return s

Comments

Comments start with # and go until the end of the line:

this is a comment

Strings can be placed as comments as first statement in
a file or a function:

def bandwidth(M):
"Compute the Bandwidth of M"
return max(abs(i-j) for i in xrange(len(M))

for j in xrange(i,len(M)) if M[i,j] != 0)

Strings surrounded by “””xxx””” or ‘’‘xxx’’’ can span
multiple lines.

Packages

Code can be imported from other files and
standard packages using import:

import NAME
from NAME import id1, id2, id3 ...
from NAME import *

For example:

import math
print math.log(10)
from math import log
print log(10)

import will search your current directory, the
standard python directories, and directories in
your PYTHONPATH environment variable.

Classes

A class represents a user defined type.

Classes can have functions and variables associated with
them.

Classes are instantiated into objects.

class Species:
def __init__(self, name):

self.name = name

def species_name(self):
return self.name

Ce = Species(“C. elegans”)
Hs = Species(“H. sapiens”)

print Ce.name, Hs.name
print Ce.species_name(), Hs.species_name()

Special function called _ _init_ _ is
the constructor that says how to
build an instance of the class.

New instance of Species created
with name = “C. elegans”

All functions in a class take a
“self” parameter that represents
the object.

Classes

Objects made from classes can be used anywhere other
variables can be used:

L = [Hs, Ce, Hs]

Strange = Species(Hs)

Fields can be added to objects on the fly:

Hs.size = 10
print Hs.size
print Ce.size

Syntactically correct!

Error! “size” field only exists in the Hs object.

Classes

class TreeNode:
 """Represents a node in the tree to be drawn"""

 def __init__(self, parent=None, name="", **options):
 self.name, self.parent = name, parent
 self.children = []
 self.length = 0.0

 if parent != None: parent.children.append(self)
 if "default_len" in options:
 self.length = options["default_len"]

Python Code to Build a Suffix Trie

def build_suffix_trie(s):
 """Construct a suffix trie."""
 assert len(s) > 0

 # explicitly build the two-node suffix tree
 Root = SuffixNode() # the root node
 Longest = SuffixNode(suffix_link = Root)
 Root.add_link(s[0], Longest)

 # for every character left in the string
 for c in s[1:]:
 Current = Longest; Previous = None
 while c not in Current.children:

 # create new node r1 with transition Current -c->r1
 r1 = SuffixNode()
 Current.add_link(c, r1)

 # if we came from some previous node, make that
 # node's suffix link point here
 if Previous is not None:
 Previous.suffix_link = r1

 # walk down the suffix links
 Previous = r1
 Current = Current.suffix_link

 # make the last suffix link
 if Current is Root:
 Previous.suffix_link = Root
 else:
 Previous.suffix_link = Current.children[c]

 # move to the newly added child of the longest path
 # (which is the new longest path)
 Longest = Longest.children[c]
 return Root

class SuffixNode:
 def __init__(self, suffix_link = None):
 self.children = {}
 if suffix_link is not None:
 self.suffix_link = suffix_link
 else:
 self.suffix_link = self

 def add_link(self, c, v):
 """link this node to node v via string c"""
 self.children[c] = v

Other Statements

Reading Files

“with” statement sets up a
context. The main use is to
open an file and ensure, no
matter what happens, the file
will be closed.

Input file is a sequence
of lines & we can

iterate over the lines
using a for loop

with open(filename) as inp:
for line in inp:

line = line.strip()
s = line.split()
...

the strip() function
removes whitespace
from the start and end
of the string

split() converts the
string into a list of words

Print
print expr1, expr2, ..., exprK

will output the result of converting the given expressions into
strings.

Expressions will be separated by a space, and a newline will be
printed at the end.

>>> print 10, 20, “cat”, 2*100-5
10 20 cat 195

End with a comma to omit the newline at the end and to smartly
separate items with spaces:

>>> for a in (1,2,3,4): print “item=”, a,
item= 1 item= 2 item= 3 item= 4

Output to a file with the (strange) syntax:

print >>F, expr1, expr2, ..., exprK

where F is an open file object.

Math Operators

x + y; x - y; x * y: addition, subtraction, and multiplication

x / y : type-preserving division (if x and y are both
integers, the result will be an integer)

x // y : integer division (floor(float(x)/y))

x % y : remainder of x / y

x**y : x raised to the yth power

abs(x) : absolute value of x

round(x) : round x to nearest integer

sum(SEQ) : sum of items in the sequence

max(SEQ) : largest item in the sequence

min(SEQ) : smallest item in the sequence

floor, ceil, log, exp, sin, cos, sqrt, factorial, and others
available in the built-in “math” package.

Boolean Expressions

Comparison operators are: == < > <= >= != in is

Boolean operators are: and or not

>>> a = [1,2,3]
>>> b = [1,2,3]
>>> a == b
True
>>> a is b
False
>>> 4 not in b
True
>>> i = 10
>>> 0 < i < 100
True

>>> 1 == 2
False
>>> 1 > 2
False
>>> 1 <= 2
True
>>> 1 != 2
True
>>> "a" in “aeiou”
True
>>> 7 in [7,8,9]
True

“a” in “aeiou” and “z” not in “aeiou”

1 < i < 128 and i*j == 100

If Statements

if 2 in xrange(-3,10,2):
print “YES”

if “abc” in “abcde”:
print “YES”

else:
print “NO”

if s == “Whitman”:
print “Leaves of Grass”

elif s == “Poe”:
print “The Raven”

elif s == “Hawthorne”
print “The House of Seven Gables”

else:
print “Author unknown”

Syntax: if EXPR:

“else” block executed if
the if-EXPR is False.

“elif” blocks are tested in
order if the first if is False
and the first elif block
that is True is run.

While Loops

while EXPR:
BLOCK

will repeatedly execute BLOCK until EXPR is False.

continue: jump to the next iteration of the while or
for loop.

break: exit out of the while or for loop.

Regular Expressions
import re
S = “al capone abalone”
if re.search(r’one|all$’, S):

print “FOUND”

The results of the search can be saved:

m = re.search(r’(.one).*(.one)’, S)
m.group(0) == “pone abalone”
m.group(1) == “pone”
m.group(2) == “lone”
m.start() == 5
m.end() == 17

re.sub performs substitutions:
S2 = re.sub(r’[aeiou]’, ‘’, S, count=10)

re.findall finds all non-overlapping instances:
re.findall(r'[aeiou]', S)
['a', 'a', 'o', 'e', 'a', 'a', 'o', 'e']

r‘ ’ strings don’t treat \ as
a special character

Omit count to replace all.
S is unchanged.

Regular Expressions 2

re.split divides the string at the pattern:

>>> re.split(r'[\s,]*', "10 , 200,30 74")
['10', '200', '30', '74']

Regular expressions support:
^ $: start, end of string
* : repeat 0 or more times
+ : repeat 1 or more times
? : occur 0 or 1 time
{m,n} : occur between m and n times (inclusive)
[] : character classes
| : or
() : grouping for later retrieval
\number : match contents of given group
\s : matches space
\d : matches digit
\w : matches alphanumeric

