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Computational Complexity

• We’ve seen algorithms for lots of problems, and the goal was
always to design an algorithm that ran in polynomial time.

• Sometimes we’ve claimed a problem is NP-hard as evidence
that no such algorithm exists.

• Now, we’ll formally say what that means.



Decision Problems

Decision Problems:

• Usually, we’ve considered optimization problems: given some
input instance, output some answer that maximizes or
minimizes a particular objective function.

• Most of computational complexity deals with a seemingly
simpler type of problem: the decision problem.

• A decision problem just asks for a yes or a no.

• We phrased Circulation with Demands as a decision
problem.



Optimization→ Decision

Recall this problem from a few weeks ago:

Weighted Interval Scheduling

Given a set of intervals {Ii} each with a nonnegative weight wi ,
find a subset of intervals S such that

∑
i∈S wi is maximized.

We can change this into a decision problem by asking:

Weighted Interval Scheduling

Given a set of intervals {Ii} each with a nonnegative weight wi , is
there a subset of intervals S such that

∑
i∈S wi is greater than C .



Decision is no harder than Optimization

The decision version of a problem is easier than (or the same as)
the optimization version.

Why, for example, is this true of Weighted Interval Scheduling?

• If you could solve the optimization version and got a solution
of value M, then you could just check to see if M > C .

• If you can solve the optimization problem, you can solve the
decision problem.

• If the decision problem is hard, then so is the optimization
version.
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Decision→ Optimization

We can often also go from decision to optimization:

Independent Set

Given graph G and a number k, does G contain a set of at least k
independent vertices?

How can we find the largest k for which G contains an
independent set of size k?

Try every possible value of k — there are only n of them.
Or even better use binary search.
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Encoding an Instance

We can encode an instance of a decision problem as a string.

Example. The encoding of a Weighted Interval Set instance
with 3 intervals might be:

s1, e1, w1; s2, e2, w2; s3, e3, w3; ; C

More explictly,

1,10,5;3,7,20;12,15,1;;10

How do we “know” intuitively that all of the problems we’ve
considered so far can be encoded as a single string?

Because we can represent them in RAM as a string of bits!
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Decision Problems and Languages

A decision problem X is really just sets of strings:

String ∈ X?

1,10,5;3,7,20;12,15,1;;10 Yes
1,10,5;3,7,20;12,15,1;;100 No
...

...

Def. A language is a set of strings.
(Analogy: English is the set of valid English words.)

Hence, any decision problem is equivalent to deciding membership
in some language.

We talk about “decision problems” and “languages” pretty much
interchangeably.



Recap

Computational complexity primarily deals with decision problems.

A decision problem is no harder than the corresponding
optimization problem.

A decision problem can be thought of as a set of the strings that
encode “yes” instances.

Such sets are called languages.

How can we say a decision problem is hard?



A Model of Computation

Ultimately, we want to say that “a computer can’t recognize some
language efficiently.”

To do that, we have to decide what we mean by a computer.

We will mean a Turing Machine.

Church-Turing Thesis

Everything that is efficiently computable is efficiently computable
on a Turing Machine.



Turing Machine

Infinitely long tape

Turing Machine 
Logic

Read/write
head

Can move left 
and right

At each time step, the TM:
• reads the symbol at the current
      position
• Depending on that symbol, and the 
      current state of the TM, it:

         - Writes a new symbol x
         - Moves Left or Right 
         - Changes to a new state s



The class P

P is the set of languages whose memberships are decidable by a
Turing Machine that makes a polynomial number of steps.

By the Church-Turing thesis, this is the “same” as:

P is the set of decision problems that can be decided by a computer
in a polynomial time.

From now on, you can just think of your normal computer as a
Turing Machine — and we won’t worry too much about that
formalism.



The Class NP

Now that we have a different (more formal) view of P, we will
define another class of problems called NP.

We need some new ideas.



Certificates

Recall the independent set problem (decision version):

Independent Set

Given a graph G , is there set S of size ≥ k such that no two nodes
in S are connected by an edge?

Finding the set S is hard (we will see).

But if I give you a set S∗, checking whether S∗ is the answer is
easy: check that |S | ≥ k and no edges go between 2 nodes in S∗.

S∗ acts as a certificate that 〈G , k〉 is a yes instance of
Independent Set.



Efficient Certification

Def. An algorithm B is an efficient certifier for problem X if:

1 B is a polynomial time algorithm that takes two input strings
I (instance of X ) and C (a certificate).

2 B outputs either yes or no.

3 There is a polynomial p(n) such that for every string I :

I ∈ X if and only if there exists string C of length
≤ p(|I |) such that B(I , C ) = yes.

B is an algorithm that can decide whether an instance I is a yes
instance if it is given some “help” in the form of a polynomially
long certificate.



Certifiers and Brute Force

Let’s say you had an efficient certifier B for the Independent Set
problem.

How could you use it in a brute force algorithm on instance I?

Try every string C of length ≤ p(|I |) and ask is B(I , C ) = yes?
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The class NP

NP is the set of languages for which there exists an efficient certifier.

P is the set of languages for which there exists an efficient certifier
that ignores the certificate.

That’s the difference:

A problem is in P if we can decided them in polynomial time. It is
in NP if we can decide them in polynomial time, if we are given
the right certificate.
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Do we have to find the certificates?

B

Instance I

Certificate C 

User provides 
instance as usual

Certificate is 
magically guessed



P ⊆ NP

Theorem

P ⊆ NP

Proof. Suppose X ∈ P. Then there is a polynomial-time algorithm
A for X .

To show that X ∈ NP, we need to design an efficient certifier
B(I , C ).

Just take B(I , C ) = A(I ). �

Every problem with a polynomial time algorithm is in NP.



P 6= NP?

The big question:

P= NP?

We know P ⊆ NP. So the question is:

Is there some problem in NP that is not in P?

Seems like the power of the certificate would help a lot.
But no one knows. . . .
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