
Network Motifs: Simple Building 
Blocks of Complex Networks

Milo et al., Science, 2002.



Beyond Degree Distribution & Diameter

Network Motifs: Consider all possible ways to 
connect 3 nodes with directed edges:

(Milo et al., Science, 2002)



Finding Over-represented Subgraphs

For each possible motif M:
Let cM be the number of times M occurs in graph G.
Estimate pM = Pr[# occurrences ≥ cM] when edges are shuffled.
Output M if pM < 0.01 and cM > 4. 

To generate a random graph 
for the 3-node motifs:
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swapped separately:



To Generate Random Graphs With a Given 
Distribution of (n-1)-node subgraphs:

Define an “energy” on a vector of occurrences of motifs:

Energy(Vrand) =
�

M

|Vreal,M − Vrand,M |
(Vreal,M − Vrand,M )

When Vrand = Vreal, the energy is 0.

Start with a randomized network.
Until Energy is small:

Make a random swap.
If the swap reduces the energy, keep it
Otherwise, keep it with probability exp(-ΔE/T)
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“Information 
processing” 
networks tend to use 
the same motifs

Other networks each 
had their own 
distinct collection of 
motifs.

Feed forward, e.g.: 
filter out transient 
signals.

(Milo et al., Science, 2002)



Quickly Finding Motifs
858L



Network Motif Discovery Using 
Subgraph Enumeration and 

Symmetry-Breaking 
Grochow & Kellis, RECOMB 2007



Backtracking (Recursive) Algorithm to Find 
Network Motifs

G = 

H = 
(Small query graph)

(Large Network) 

Def. Node g supports 
node h if the degrees of 
g and h are compatible.  
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Basic Algorithm:

For each node g ∈ G
For each node h ∈ H
If h can’t support g: continue

Let f = {(g!h)}
L = Extend(f, G, H)
For q in L: 
Output image of q

Remove g from G

q : VH → VG

For every possible 
mapping of a single 
node from G to H

f is a partial map that maps g to h.

Then grow this partial map 
into many full maps

No need to consider g again 
(since we tried all its 
possible matches already)



Extend(f, G, H):

If domain(f) = H: return [f]

Let m = some node in N(domain(f))
For each node u ∈ N(f(domain(f))):

If adding (m!u) to f keeps f as a 
valid isomorphism then:
Extend(f∪{(m!u)}, G, H)
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Base case

Choose a node in H
Try to map it to G
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Speed-up #1

• Every time we can choose a node, we pick the one 
that is “most constrained”:

- Pick the node that already has the most mapped 
neighbors

- If there are ties, choose the node with the highest degree

- If there are still ties, choose the node with highest 2nd 
order degree (total degree of the neighbors)

• Just a heuristic --- doesn’t hurt because we can pick 
the nodes in any order we want

-  if a map that we are building can’t be completed, we 
want to know sooner rather than later.



Automorphisms & Orbits
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Def. An automorphism 
is an isomorphism from 
a graph to itself.

Orbit of a node u is 
the set of nodes that 
u is mapped to under 
some automorphism
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A mapping f induces 
a numbering on H4
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A < min{B,C}

C < min{B}

If we add these constraints, we 
get only one possible mapping



Adding Constraints, Larger Example

(Figure from Grochow & Kellis, 2007)



Basic Algorithm, differences for symmetry breaking

For each node g ∈ G
For each node h ∈ H s.t. we haven’t 
considered q ∈ Orbit(h):
If h can’t support g: continue

Let f = {(g!h)}
L = Extend(f, G, H, CH)
For q in L: 
Output image of q

Remove g from G

q : VH → VG



Extend(f, G, H), symmetry breaking differences

If domain(f) = H: return [f]

Let m = some node in N(domain(f))
For each node u ∈ N(f(domain(f))):

If adding (m!u) to f keeps f as a 
valid isomorphism 
and (m!u) obeys the constraints 
then:
Extend(f∪{(m!u)}, G, H)
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Results: Running Time

(Figure from Grochow & Kellis, 2007)



Results: Benefit of Symmetry Breaking



Really Large “motifs”? Meaningful?

Occurred 27,720 times 
in the real yeast PPI 

network (but rarely in a 
random network)

Really just a subgraph 
of this part of the yeast 

PPI: choose 4 nodes 
from the clique and 3 
nodes from the oval.

(Figure from Grochow & Kellis, 2007)



Other Advantages

• Since symmetry breaking ensures each match is 
output only once, they don’t need to keep track of 
which graphs they’ve already output

- save a lot of space

• Can be parallelized better



Spiritual Similarity to Color Coding

• Color Coding: make distinguishable things looks the 
same

• Symmetry Breaking: make indistinguishable things 
look different.


