Network Motifs: Simple Building
Blocks of Complex Networks
Milo et al., Science, 2002.

Beyond Degree Distribution & Diameter

Network Motifs: Consider all possible ways to
connect 3 nodes with directed edges:

>

Sz
>

(Milo et al., Science, 2002)

>z
2>

Finding Over-represented Subgraphs

For each possible motif M:
Let cv be the number of times M occurs in graph G.
Estimate pv = Pr[# occurrences > cvi] when edges are shuffled.
Output M if py < 0.01 and cv > 4.

Q

To generate a random graph
for the 3-node motifs:

Single and double edges
swapped separately:

- X

O—E O—OC
¢

ONOWO
&)

)

o
|
©

& ©

To Generate Random Graphs With a Given
Distribution of (n-1)-node subgraphes:

Define an “energy” on a vector of occurrences of motits:

Energy(Viana) = Z
M

‘V;eal,M — V;and,M‘

(‘/rea,l,M + V}and,M)

When Viand = Vreal, the energy is 0.

Start with a randomized network.

Until Energy is small:
Make a random swap.
If the swap reduces the energy, keep it
Otherwise, keep it with probability exp(-AE/T)

Network Nodes Edges Nieal Nrand*¥SD Zscore | Nreal Nrand £SP Zscore | Nreal Nrand*SD Z score
Gene regulation X Feed- X Bi-fan
(transcription) \y forward
\fl loop
Z w ll L]
4 Information
E. coli 424 519 40 7:x3 10 203 47+12 13 pe
y R * y 3
S. cerevisiae 685 1,052 70 11 £ 4 14 182,2 300 * 40 4{ : pro Ce881ng
Neurons X Feed- X Y Bi-fan X Bi-
V forward v\ parallel k d
y loop v, Lz networks tend to use
7 Z W N ¥
w .
: h
C. eleganst 252 509 125 90 + 10 3.7 127 55+13 5.3 227 35+10 20 t e Same mOtlfS
Food webs X Three X Bi-
\' chain ¥ N parallel
Y Y Z
N ¥ h h
g . Other networks eac
Little Rock 92 984 3219 3120 £ 50 2.1 7295 2220210 25 .
Ythan 83 391 1182 102020 7.2 1357 230+50 23 had thelr OoOwn
St. Martin 42 205 469 450+ 10 NS 382 130 £ 20 12
Chesapeake 31 67 80 82+4 NS 26 5+2 8 1 1 1
a3 dm | ssen a8 |ae apek - distinct collection of
Skipwith 25 189 184 150+ 7 5.5 397 80 %25 13 .
B. Brook 25 104 181 130+7 7.4 267 30+7 32 motifs.
Electronic circuits X Feed- X) 4 Bi-fan ¥ X N Bi-
(forward logic chips) A4 forward | >§ | Y 7 parallel
Y loop
\ e N, \
Z Feed forward, e.g.:
s15850 10,383 14,240 J 424 2+2 285 1040 1+1 1200 480 2+1 335
s38584 20,717 34,204 | 413 103 120 1739 62 800 711 9%2 320 b *
s38417 23,843 33,661 | 612 3x2 400 2404 11 2550 531 2%2 340 fllter Out tranS]-ent
s9234 5,844 8,197 | 211 2+1 140 754 1+1 1050 209 1+1 200 .
513207 8,651 11,831 § 403 2+1 225 4445 1+1 4950 264 2+1 200 Slgnals
Electronic circuits X Three- X Y Bi-fan X—>Y Four-
(digital fractional multipliers) ﬂ \ node node
feedback feedback
Y<— Z loop 7 w 7 <—W loop
s208 122 189 10 1+1 9 4 11 3.8 5 5
s420 252 399 20 1+1 18 10 11 10 11 11
s838% 512 819 40 1+1 38 22 1+1 20 23 1+1 25
World Wide Web X Feedback X Fully X Uplinked
$ with two ﬂ N connected ﬂ N mutual
mutual g triad Y 7 dyad
dvid Y<€<— Z <> Z
7 yads
nd.edu§ 325,729 1.46e6 | 1.1e5 2e3 +1e2 800 6.8¢6 Sed+4e2 15,000 12e6 led4+2e2 5000 (Milo et al.l SCience, 2002)

Quickly Finding Motifs

858L

Network Motif Discovery Using
Subgraph Enumeration and

Symmetry-Breaking
Grochow & Kellis, RECOMB 2007

Backtracking (Recursive) Algorithm to Find
Network Motifs

H Def. Node ¢ supports
- node # if the degrees of

(Small query graph) ¢ and h are compatible.

G—

(Large Network)

Backtracking (Recursive) Algorithm to Find
Network Motifs

H Def. Node ¢ supports
- node # if the degrees of

(Small query graph) ¢ and h are compatible.

f:VH%VG

G—

(Large Network) v

Basic Algorithm:

For each node g € G
For each node h € H

If h can’'t support g:

Let £ = {(g»h)}
LL = Extend(£f, G, H)
For g in L:
Output image of ¢
Remove g from G

\

No need to consider g again
(since we tried all its
possible matches already)

For every possible
mapping of a single
node from G to H

continue

f is a partial map that maps g to h.

Then grow this partial map
into many full maps

Extend(f, G, H):
If domain(f) = H: return [f] Base case

Let m = some node in N(domain(f)) ChooseanodeinH
For each node u € N(f(domain(f))): TrytomapittoG

If adding (m~»u) to f keeps f as a
valid isomorphism then:
Extend(fu{(m>u)}, G, H)

N(domain(f))

m
g domain(f)

b f(domain(f))

N(f(domain(f)))

Extend(f, G, H):
If domain(f) = H: return [f] Base case

Let m = some node in N(domain(f)) ChooseanodeinH
For each node u € N(f(domain(f))): TrytomapittoG

If adding (m~»u) to f keeps f as a
valid isomorphism then:
Extend(fu{(m>u)}, G, H)

N(domain(f))

m
g domain(f)

b f(domain(f))

N(f(domain(f)))

Speed-up #1

e Every time we can choose a node, we pick the one
that is “most constrained”:

- Pick the node that already has the most mapped
neighbors

- If there are ties, choose the node with the highest degree

- If there are still ties, choose the node with highest 2nd
order degree (total degree of the neighbors)

® Just a heuristic --- doesn’t hurt because we can pick
the nodes in any order we want

- if a map that we are building can’t be completed, we
want to know sooner rather than later.

Def. An automorphism
is an isomorphism from
a graph to itself.

Automorphisms & Orbits

Orbit of a node u is
the set of nodes that
u is mapped to under
some automorphism

Def. An automorphism
is an isomorphism from
a graph to itself.

Automorphisms & Orbits

Orbit of a node u is
the set of nodes that
u is mapped to under
some automorphism

Main Speedup (#2)

Number each
node of G

Main Speedup (#2)

A mapping f induces
a numbering on H

f:Vg— V¢

Number each
node of G

Main Speedup (#2)

A mapping f induces
a numbering on H

f:Vg— V¢

Number each
node of G

Main Speedup (#2)

If we add these constraints, we
get only one possible mapping

A <min{B,C}

C < min{B} A mapping f induces

a numbering on H

f: Vg — Vg

Number each
node of G

E

E

Adding Constraints, Larger Example

[

none

"

C<D; E<PF

A

B

Dty

E B
C <D
F:> {A
D C
E B

C<D;,E<F; A<B

(Figure from Grochow & Kellis, 2007)

Basic Algorithm, differences for symmetry breaking

For each node g € G
For each node h € H s.t. we haven’t
considered g € Orbit(h):
If h can’'t support g: continue

Let £ = {(g-h)}
L Extend(£f, G, H, Cy)
For g in L:
Output image of g
Remove g from G

Extend(f, G, H), symmetry breaking differences
If domain(f) = H: return [f]

Let m = some node in N(domain(f))
For each node u € N(f(domain(f))):

If adding (m~»u) to f keeps f as a
valid isomorphism
and (m-»>u) obeys the constraints

then:

Extend(fUu{(m>u)}, G, H) N(domain(f))

g domain(f)

f(domain(f))

N(f(domain(f)))

Results: Running Time

100000 ¢ I I l
- Milo et al. A
- Milo (W/ hash) ——+-—- 7 -
10000 £ Grochow-Kellis ---&--- .- 3
© 1000 ¢ _X>13
< : 518
e 100 F -
10 -
1 |
9 7

(Figure from Grochow & Kellis, 2007)

Results: Benefit of Symmetry Breaking

Undirected PPI Network

Directed Regulatory Network

[72]

Il Total With Total With

Z| Subgraphs | Symmetry- |Improvement|| Subgraphs | Symmetry- |Improvement
Searched Breaking Searched Breaking

3| 3.7x10% 1.1x10% x3.13 2.6%x10% 1.3x10? x 2.02

4| 4.0x10° 7.0x10* x5.77 9.7x10° 1.8x10° x5.41

5/ 4.4x10° 4.1x10° x10.9 4.4%10° 2.5x10° x 18.0

6| 5.1x10° 2.3%x10° X 22.2 2.3x10” 3.2x10° X73.3

7l 5.7x10° 1.2x10° X 46.3 1.3x10 4.0%x10° X 334

8] 6.4x10° 6.6x 10" X 96.2 — - —

Really Large “motifs”? Meaningful?

(Figure from Grochow & Kellis, 2007)

TAF11

TAF14

@
®
TAF10 TAF6
\/
ADAL, ADAZ2
CLP1, YPR115W, PRP2 ALIAGs DA
RLMI1, RIM15, ECM22 ADAS, TRAL
RAPL, YAPS6, TAO3 SPT3, SPT7
PRP40, UMES, ASK10 SPT8
Occurred 27,720 times Really just a subgraph
in the real yeast PPI of this part of the yeast
network (but rarely in a PPI: choose 4 nodes
random network) from the clique and 3

nodes from the oval.

Other Advantages

® Since symmetry breaking ensures each match is
output only once, they don’t need to keep track of
which graphs they’ve already output

- save a lot of space

e (an be parallelized better

Spiritual Similarity to Color Coding

e Color Coding: make distinguishable things looks the
same

¢ Symmetry Breaking: make indistinguishable things
look different.

