Network Motifs: Simple Building Blocks of Complex Networks Milo et al., Science, 2002.

Beyond Degree Distribution \& Diameter

Network Motifs: Consider all possible ways to connect 3 nodes with directed edges:

(Milo et al., Science, 2002)

Finding Over-represented Subgraphs

For each possible motif M:
Let c_{M} be the number of times M occurs in graph G.
Estimate $\mathrm{p}_{\mathrm{M}}=\operatorname{Pr}\left[\#\right.$ occurrences $\left.\geq \mathrm{c}_{\mathrm{M}}\right]$ when edges are shuffled.
Output M if $\mathrm{p}_{\mathrm{M}}<0.01$ and $\mathrm{c}_{\mathrm{M}}>4$.

To generate a random graph for the 3-node motifs:

Single and double edges
 swapped separately:

To Generate Random Graphs With a Given Distribution of ($\mathrm{n}-1$)-node subgraphs:

Define an "energy" on a vector of occurrences of motifs:

$$
\operatorname{Energy}\left(V_{\text {rand }}\right)=\sum_{M} \frac{\left|V_{\text {real }, M}-V_{\text {rand }, M}\right|}{\left(V_{\text {real }, M}+V_{\text {rand }, M}\right)}
$$

When $V_{\text {rand }}=V_{\text {real, }}$ the energy is 0 .

Start with a randomized network.
Until Energy is small:
Make a random swap.
If the swap reduces the energy, keep it
Otherwise, keep it with probability $\exp (-\Delta E / T)$

Network	Nodes	Edges	$N_{\text {real }}$	$N_{\text {rand }} \pm$ SD	Z score	$N_{\text {real }}$	$N_{\text {rand }} \pm$ SD	Z score	$N_{\text {real }} \quad N_{\text {rand }} \pm$ SD	Z score	
Gene regulation (transcription)			$\begin{array}{cc} \hline \mathrm{X} & \text { Feed } \\ \mathrm{V} & \text { forw: } \\ \mathrm{Y} & \text { loop } \\ \vee & \\ \mathrm{Z} & \end{array}$								"Information
E. coli S. cerevisiae*	$\begin{aligned} & 424 \\ & 685 \\ & \hline \end{aligned}$	$\begin{array}{r} 519 \\ 1,052 \\ \hline \end{array}$		$\begin{array}{r} 7 \pm 3 \\ 11 \pm 4 \\ \hline \end{array}$	$\begin{aligned} & 10 \\ & 14 \\ & \hline \end{aligned}$	$\begin{array}{r} 203 \\ 1812 \\ \hline \end{array}$	$\begin{array}{r} 47 \pm 12 \\ 300 \pm 40 \\ \hline \end{array}$				processing ${ }^{\prime \prime}$
Neurons					Feedforward loop			Bi-fan	$\begin{gathered} V_{W}^{X} V_{V} \\ V^{Z} \end{gathered}$	Biparallel	networks tend to use the same motifs
C. elegans \dagger	252	509	125	90 ± 10	3.7		55 ± 13	5.3	$227 \quad 35 \pm 10$	20	
Food webs				$\begin{aligned} & \mathrm{X} \\ & \mathrm{~V} \\ & \mathbf{Y} \\ & \vee \\ & \mathrm{Z} \end{aligned}$	Three chain	Y_{V}	V v^{Z}	Biparallel			Other networks each
Little Rock	92	984	3219	3120 ± 50	2.1	7295	2220 ± 210	25			had their own
Ythan	83	391	1182	1020 ± 20	7.2	1357	230 ± 50	23			had their own
St. Martin Chesapeake	42 31	205 67	469 80	450 ± 10 82 ± 4	NS	382 26	130 ± 20 5 ± 2	12 8			
Coachella	29	243	279	235 ± 12	3.6	181	80 ± 20	5			distinct conection
Skipwith	25	189	184	150 ± 7	5.5	397	80 ± 25	13			
B. Brook	25	104	181	130 ± 7	7.4	267	30 ± 7	32			motifs.
Electronic circuits (forward logic chips)			$\begin{array}{ll} \hline X & \text { Feed- } \\ \underset{Y}{ } & \text { forward } \\ Y & \text { loop } \\ \Psi & \\ Z & \end{array}$						${\underset{Y}{V}}_{V_{V}^{X}}^{V}$		Feed forward, e.g.:
s15850	10,383	14,240	424	2 ± 2	285	1040	1 ± 1	1200	$480 \quad 2 \pm 1$	335	Feed forwara, e.g•
s38584	20,717	34,204	413	10 ± 3	120	1739	6 ± 2	800	$\begin{array}{ll}711 & 9 \pm 2 \\ 531 & 2 \pm 2\end{array}$	320	
s38417	23,843	33,661	612	3 ± 2	400	2404	1 ± 1	2550	$531 \quad 2 \pm 2$	340	fiter out transient
s9234	5,844	8,197	211	2 ± 1	140	754	1 ± 1	1050	2091 ± 1	200	
s13207	8,651	11,831	403	2 ± 1	225	4445	1 ± 1	4950	$264 \quad 2 \pm 1$	200	signals.
Electronic circuits (digital fractional multipliers)			$\begin{aligned} & \nearrow^{\mathrm{x}} \searrow \\ & \mathrm{y} \longleftarrow \mathrm{z} \end{aligned}$		Threenode feedback loop			Bi-fan		Four- node feedback loop	
s208	122	189	10	1 ± 1	9		1 ± 1	3.8	$5 \quad 1 \pm 1$	5	
s420	252	399	20	1 ± 1	18	10	1 ± 1	10	$11 \quad 1 \pm 1$	11	
s838 \ddagger	512	819	40	1 ± 1	38		1 ± 1	20	$23 \quad 1 \pm 1$	25	
World Wide Web			$\left[\begin{array}{l} \mathrm{X} \\ \downarrow \\ \underset{y}{n} \\ \underset{Z}{2} \end{array}\right.$		Feedback with two mutual dyads			Fully connected triad	$\underset{\mathrm{y} \leftrightarrow \mathrm{x}}{\prod_{\mathrm{x}}^{\mathrm{x}} \stackrel{y}{2}}$	Uplinked mutual dyad	
nd.edu§	325,729	1.46 e 6	1.1e5	$2 \mathrm{e} 3 \pm 1 \mathrm{e} 2$	800	6.8 e	$5 \mathrm{e} 4 \pm 4 \mathrm{e} 2$	15,000	$1.2 \mathrm{e} 6 \quad 1 \mathrm{e} 4 \pm 2 \mathrm{e} 2$	5000	(Milo et al., Science, 2002)

Quickly Finding Motifs 858L

Network Motif Discovery Using

 Subgraph Enumeration and Symmetry-Breaking Grochow \& Kellis, RECOMB 2007
Backtracking (Recursive) Algorithm to Find Network Motifs

Def. Node g supports node h if the degrees of g and h are compatible.

Backtracking (Recursive) Algorithm to Find Network Motifs

Basic Algorithm:

For each node $g \in G$ For each node $h \in H$

If h can't support $g:$ continue

Let $f=\{(g \rightarrow h)\}$
L = Extend(f, G, H)
For q in L :
Output image of q
Remove g from G

No need to consider g again (since we tried all its possible matches already)

For every possible mapping of a single node from G to H
f is a partial map that maps g to h .
Then grow this partial map into many full maps

Extend(f, G, H):

If domain(f) $=H:$ return [f] Base case
Let $m=$ some node in $N($ domain(f)) Choose a node in H For each node $u \in N(f(d o m a i n(f)))$: Try to map it to G

If adding ($m \rightarrow u$) to f keeps f as a valid isomorphism then: Extend(fu\{(m $\rightarrow u)\}, G, H)$

Extend(f, G, H):

If domain(f) $=H:$ return [f] Base case
Let $m=$ some node in $N($ domain(f)) Choose a node in H For each node $u \in N(f(d o m a i n(f)))$: Try to map it to G

If adding ($m \rightarrow u$) to f keeps f as a valid isomorphism then: Extend(fu\{(miu)\}, G, H)

Speed-up \#1

- Every time we can choose a node, we pick the one that is "most constrained":
- Pick the node that already has the most mapped neighbors
- If there are ties, choose the node with the highest degree
- If there are still ties, choose the node with highest 2nd order degree (total degree of the neighbors)
- Just a heuristic --- doesn't hurt because we can pick the nodes in any order we want
- if a map that we are building can't be completed, we want to know sooner rather than later.

Def. An automorphism is an isomorphism from a graph to itself.

Orbit of a node u is the set of nodes that u is mapped to under some automorphism

Def. An automorphism is an isomorphism from a graph to itself.

Orbit of a node u is the set of nodes that u is mapped to under some automorphism

Main Speedup (\#2)

Main Speedup (\#2)

Main Speedup (\#2)

Main Speedup (\#2)

If we add these constraints, we get only one possible mapping
$\mathrm{A}<\min \{\mathrm{B}, \mathrm{C}\}$
$\mathrm{C}<\min \{\mathrm{B}\}$

Adding Constraints, Larger Example

$C<D ; E<F$
E

$C<D ; E<F ; A<B$
(Figure from Grochow \& Kellis, 2007)

Basic Algorithm, differences for symmetry breaking

For each node $g \in G$
For each node $h \in H$ s.t. we haven't considered $q \in$ Orbit(h):

If h can't support $g:$ continue

Let $f=\{(g \rightarrow h)\}$
$L=$ Extend $\left(f, G, H, C_{H}\right)$
For q in L :
Output image of q
Remove g from G

Extend(f, G, H), symmetry breaking differences

If domain(f) = H: return [f]
Let $m=$ some node in $N(d o m a i n(f))$ For each node $u \in N(f(d o m a i n(f))):$

If adding ($m \rightarrow u$) to f keeps f as a valid isomorphism
and ($m \rightarrow u$) obeys the constraints then:

Extend(fu\{(m $\rightarrow \mathrm{u})\}, \mathrm{G}, \mathrm{H})$

Results: Running Time

(Figure from Grochow \& Kellis, 2007)

Results: Benefit of Symmetry Breaking

	Undirected PPI Network			Directed Regulatory Network		
	Total Subgraphs Searched	With Symmetry- Breaking	Improvement	Total Subgraphs Searched	With Symmetry- Breaking	Improvement
	3.7×10^{4}	1.1×10^{4}	$\times 3.13$	2.6×10^{4}	1.3×10^{4}	$\times 2.02$
4	4.0×10^{5}	7.0×10^{4}	$\times 5.77$	9.7×10^{5}	1.8×10^{5}	$\times 5.41$
5	4.4×10^{6}	4.1×10^{5}	$\times 10.9$	4.4×10^{7}	2.5×10^{6}	$\times 18.0$
6	5.1×10^{7}	2.3×10^{6}	$\times 22.2$	2.3×10^{9}	3.2×10^{7}	$\times 73.3$
7	5.7×10^{8}	1.2×10^{7}	$\times 46.3$	1.3×10^{11}	4.0×10^{8}	$\times 334$
8	6.4×10^{9}	6.6×10^{7}	$\times 96.2$	-	-	-

Really Large "motifs"? Meaningful?

(Figure from Grochow \& Kellis, 2007)

Occurred 27,720 times in the real yeast PPI network (but rarely in a random network)

Really just a subgraph of this part of the yeast PPI: choose 4 nodes from the clique and 3 nodes from the oval.

Other Advantages

- Since symmetry breaking ensures each match is output only once, they don't need to keep track of which graphs they've already output
- save a lot of space
- Can be parallelized better

Spiritual Similarity to Color Coding

- Color Coding: make distinguishable things looks the same
- Symmetry Breaking: make indistinguishable things look different.

