Network Motifs: Simple Building Blocks of Complex Networks Milo et al., Science, 2002.

Beyond Degree Distribution & Diameter

Network Motifs: Consider all possible ways to connect 3 nodes with directed edges:

(Milo et al., Science, 2002)

Finding Over-represented Subgraphs

For each possible motif M:

Let c_M be the number of times M occurs in graph G.

Estimate $p_M = Pr[\# occurrences \ge c_M]$ when edges are shuffled.

Output M if $p_M < 0.01$ and $c_M > 4$.

To generate a random graph for the 3-node motifs:

Single and double edges swapped separately:

To Generate Random Graphs With a Given Distribution of (n-1)-node subgraphs:

Define an "energy" on a vector of occurrences of motifs:

$$\text{Energy}(V_{\text{rand}}) = \sum_{M} \frac{|V_{\text{real},M} - V_{\text{rand},M}|}{(V_{\text{real},M} + V_{\text{rand},M})}$$

When $V_{rand} = V_{real}$, the energy is 0.

Start with a randomized network.

Until Energy is small:

Make a random swap.

If the swap reduces the energy, keep it

Otherwise, keep it with probability $\exp(-\Delta E/T)$

Network	Nodes	Edges	$N_{\rm real}$	N _{rand} ± SD	Z score	$N_{\rm real}$	N _{rand} ± SD	Zscore	$N_{\rm real}$	$N_{\rm rand} \pm SE$) Z score
Gene regulat		Edges	-'real		Feed-	X	v	Bi-fan	real	rand - OL	Z score
(transcription				· X · V	forward	Î	1	DI-Tall	l		
(transcription	.,				loop	VZ	NE.		l		
				¥	roop.	Z	W		l		
			⊳	Z					l		
E. coli	424	519	40	7 ± 3	10	203	47 ± 12	13	l		
S. cerevisiae*	685	1,052	70	11 ± 4	14	1812	300 ± 40	41			
Neurons			I –	Ϋ́	Feed-	X	Y	Bi-fan	K.	W X	Bi-
				-	forward		<.\\			4	parallel
				Y W	loop	Z	W		ν^{Y}	ν^{z}	
			⊳	7		-			,	w	
C. elegans†	252	509	125	90 ± 10	3.7	127	55 ± 13	5.3	227	35 ± 10	20
Food webs				X	Three		ζ.,	Bi-			
			ı	Ψ	chain	1	A	parallel	l		
			ı	¥		Y	ν^z		l		
			ı	V Z		 ⁴			l		
Little Rock	92	984	3219	3120 ± 50	2.1	7295	2220 ± 210	25	l		
Ythan	83	391	1182	1020 ± 30	7.2	1357	230 ± 50	23	l		
St. Martin	42	205	469	450 ± 10	NS	382	130 ± 20	12	l		
Chesapeake	31	67	80	82 ± 4	NS	26	5 ± 2	8	l		
Coachella	29	243	279	235 ± 12	3.6	181	80 ± 20	5	l		
Skipwith	25	189	184	150 ± 7	5.5	397	80 ± 25	13	l		
B. Brook	25	104	181	130 ± 7	7.4	267	30 ± 7	32			
Electronic cir				Ϋ́	Feed-	X	Y	Bi-fan	K.	N N	Bi-
(forward logic	chips)				forward		~ /		Y	\mathbf{z}	parallel
				Y V	loop	Z	W		71	K	
			⊳	ż			**		l '	W	
s15850	10,383	14,240	424	2 ± 2	285	1040	1 ± 1	1200	480	2 ± 1	335
s38584	20,717	34,204	413	10 ± 3	120	1739	6 ± 2	800	711	9 ± 2	320
s38417	23,843	33,661	612	3 ± 2	400	2404	1 ± 1	2550	531	2 ± 2	340
s9234	5,844	8,197	211	2 ± 1	140	754	1 ± 1	1050	209	1 ± 1	200
s13207	8,651	11,831	403	2 ± 1	225	4445	1 ± 1	4950	264	2 ± 1	200
Electronic cir			X	(Three-	X	Y	Bi-fan	X-	→ Y	Four-
(digital fracti	onal mult	ipliers)	1	7	node				1 1		node
			· /	7	feedback	VZ	AM			V	feedback
			Y <	— z	loop	Z	W		z <	— w	loop
s208	122	189	10	1 ± 1	9	4	1 ± 1	3.8	5	1 ± 1	5
s420	252	399	20	1 ± 1	18	10	1 ± 1	10	11	1 ± 1	11
s838‡	512	819	40	1 ± 1	38	22	1 ± 1	20	23	1 ± 1	25
World Wide	Web		₽	X	Feedback	X	-	Fully	X		Uplinked
				Ψ	with two	1	1	connected	1	1	mutual

mutual

nd.edu§

triad

15,000

dyad

"Informationprocessing"networks tend to usethe same motifs

Other networks each had their own distinct collection of motifs.

Feed forward, e.g.: filter out transient signals.

(Milo et al., Science, 2002)

Quickly Finding Motifs

858L

Network Motif Discovery Using Subgraph Enumeration and Symmetry-Breaking Grochow & Kellis, RECOMB 2007

Backtracking (Recursive) Algorithm to Find Network Motifs

Def. Node *g* **supports** node *h* if the degrees of *g* and *h* are compatible.

Backtracking (Recursive) Algorithm to Find Network Motifs

Basic Algorithm:

```
For each node g \in G
For each node h \in H
If h can't support g: continue
```

```
Let f = {(g→h)}
L = Extend(f, G, H)
For q in L:
   Output image of q
Remove g from G
```

No need to consider g again (since we tried all its possible matches already)

f is a partial map that maps g to h.

For every possible

Then grow this partial map into many full maps

Extend(f, G, H):

```
If domain(f) = H: return [f]
                                      Base case
                                          Choose a node in H
Let m = some node in N(domain(f))
                                          Try to map it to G
For each node u \in N(f(domain(f))):
 If adding (m→u) to f keeps f as a
 valid isomorphism then:
                                          N(domain(f))
   Extend(fU{(m→u)}, G, H)
                                 m
                                             domain(f)
                                            f(domain(f))
                                                  N(f(domain(f)))
```

Extend(f, G, H):

```
If domain(f) = H: return [f]
                                        Base case
                                            Choose a node in H
Let m = some node in N(domain(f))
                                            Try to map it to G
For each node u \in N(f(domain(f))):
 If adding (m→u) to f keeps f as a
 valid isomorphism then:
                                            N(domain(f))
   Extend(fU\{(m\rightarrow u)\}, G, H)
                                  m
                                               domain(f)
                                              f(domain(f))
                                                    N(f(domain(f)))
```

Speed-up #1

- Every time we can choose a node, we pick the one that is "most constrained":
 - Pick the node that already has the most mapped neighbors
 - If there are ties, choose the node with the highest degree
 - If there are still ties, choose the node with highest 2nd order degree (total degree of the neighbors)
- Just a heuristic --- doesn't hurt because we can pick the nodes in any order we want
 - if a map that we are building can't be completed, we want to know sooner rather than later.

Automorphisms & Orbits

Def. An automorphism is an isomorphism from a graph to itself.

Orbit of a node *u* is the set of nodes that *u* is mapped to under some automorphism

Automorphisms & Orbits

Def. An automorphism is an isomorphism from a graph to itself.

Orbit of a node *u* is the set of nodes that *u* is mapped to under some automorphism

If we add these constraints, we get only one possible mapping

Adding Constraints, Larger Example

(Figure from Grochow & Kellis, 2007)

Basic Algorithm, differences for symmetry breaking

```
For each node g \in G
 For each node h 

H s.t. we haven't
 considered q ∈ Orbit(h):
   If h can't support g: continue
   Let f = \{(g \rightarrow h)\}
   L = Extend(f, G, H, C_H)
   For q in L:
    Output image of q
Remove g from G
```


Extend(f, G, H), symmetry breaking differences

```
If domain(f) = H: return [f]
Let m = some node in N(domain(f))
For each node u \in N(f(domain(f))):
  If adding (m→u) to f keeps f as a
 valid isomorphism
 and (m→u) obeys the constraints
 then:
                                              N(domain(f))
   Extend(fU\{(m\rightarrow u)\}, G, H)
                                     m
                                                 domain(f)
                                                f(domain(f))
                                                    N(f(domain(f)))
```

Results: Running Time

Results: Benefit of Symmetry Breaking

		rected PPI Ne	etwork	Directed Regulatory Network				
Nodes	Total Subgraphs	With Symmetry-	Improvement	Total Subgraphs	With Symmetry-	Improvement		
	Searched	Breaking	_	Searched	Breaking			
3	3.7×10^4	1.1×10^{4}	×3.13	2.6×10^{4}	1.3×10^{4}	×2.02		
4	4.0×10^{5}	7.0×10^4	×5.77	9.7×10^{5}	1.8×10^{5}	×5.41		
5	4.4×10^{6}	4.1×10^{5}	×10.9	4.4×10^{7}	2.5×10^{6}	×18.0		
6	5.1×10^{7}	2.3×10^{6}	×22.2	2.3×10^{9}	3.2×10^{7}	×73.3		
7	5.7×10^{8}	1.2×10^{7}	×46.3	1.3×10^{11}	4.0×10^{8}	×334		
8	6.4×10^9	6.6×10^{7}	×96.2	_	_	_		

Really Large "motifs"? Meaningful?

(Figure from Grochow & Kellis, 2007)

Occurred 27,720 times in the real yeast PPI network (but rarely in a random network)

Really just a subgraph of this part of the yeast PPI: choose 4 nodes from the clique and 3 nodes from the oval.

Other Advantages

- Since symmetry breaking ensures each match is output only once, they don't need to keep track of which graphs they've already output
 - save a lot of space
- Can be parallelized better

Spiritual Similarity to Color Coding

• Color Coding: make distinguishable things looks the same

• <u>Symmetry Breaking:</u> make indistinguishable things look different.