
Network Motifs: Simple Building
Blocks of Complex Networks

Milo et al., Science, 2002.

Beyond Degree Distribution & Diameter

Network Motifs: Consider all possible ways to
connect 3 nodes with directed edges:

(Milo et al., Science, 2002)

Finding Over-represented Subgraphs

For each possible motif M:
Let cM be the number of times M occurs in graph G.
Estimate pM = Pr[# occurrences ! cM] when edges are shufßed.
Output M if pM < 0.01 and cM > 4.

To generate a random graph
for the 3-node motifs:

a b

c d

a b

c d

a b

c d

a b

c d

Single and double edges
swapped separately:

To Generate Random Graphs With a Given
Distribution of (n-1)-node subgraphs:

DeÞne an ÒenergyÓ on a vector of occurrences of motifs:

Energy(Vrand) =
�

M

|Vreal ,M − Vrand ,M |
(Vreal ,M − Vrand ,M)

When Vrand = Vreal, the energy is 0.

Start with a randomized network.
Until Energy is small:

Make a random swap.
If the swap reduces the energy, keep it
Otherwise, keep it with probability exp(- ΔE/T)

+

I

I

I

E

ÒInformation
processingÓ
networks tend to use
the same motifs

Other networks each
had their own
distinct collection of
motifs.

Feed forward, e.g.:
Þlter out transient
signals.

(Milo et al., Science, 2002)

Quickly Finding Motifs
858L

Network Motif Discovery Using
Subgraph Enumeration and

Symmetry-Breaking
Grochow & Kellis, RECOMB 2007

Backtracking (Recursive) Algorithm to Find
Network Motifs

G =

H =
(Small query graph)

(Large Network)

Def . Node g supports
node h if the degrees of
g and h are compatible.

Backtracking (Recursive) Algorithm to Find
Network Motifs

G =

H =
(Small query graph)

(Large Network)

Def . Node g supports
node h if the degrees of
g and h are compatible.

f : VH → VG

Basic Algorithm:

For each node g ∈ G
For each node h ∈ H
If h can’t support g: continue

Let f = {(g!h)}
L = Extend(f, G, H)
For q in L:
Output image of q

Remove g from G

q : VH → VG

For every possible
mapping of a single
node from G to H

f is a partial map that maps g to h.

Then grow this partial map
into many full maps

No need to consider g again
(since we tried all its
possible matches already)

Extend(f, G, H):

If domain(f) = H: return [f]

Let m = some node in N(domain(f))
For each node u ∈ N(f(domain(f))):

If adding (m!u) to f keeps f as a
valid isomorphism then:
Extend(f∪{(m!u)}, G, H)

g

h

domain(f)

N(domain(f))

f(domain(f))

N(f(domain(f)))

m

u

u

Base case

Choose a node in H

Try to map it to G

Extend(f, G, H):

If domain(f) = H: return [f]

Let m = some node in N(domain(f))
For each node u ∈ N(f(domain(f))):

If adding (m!u) to f keeps f as a
valid isomorphism then:
Extend(f∪{(m!u)}, G, H)

g

h

domain(f)

N(domain(f))

f(domain(f))

N(f(domain(f)))

m

u

u

Base case

Choose a node in H

Try to map it to G

Speed-up #1

¥ Every time we can choose a node, we pick the one
that is Òmost constrainedÓ:

- Pick the node that already has the most mapped
neighbors

- If there are ties, choose the node with the highest degree

- If there are still ties, choose the node with highest 2nd
order degree (total degree of the neighbors)

¥ Just a heuristic --- doesnÕt hurt because we can pick
the nodes in any order we want

- if a map that we are building canÕt be completed, we
want to know sooner rather than later.

Automorphisms & Orbits

C

A

B

D

E

F

C

A

B

D

E

F

Def. An automorphism
is an isomorphism from
a graph to itself.

Orbit of a node u is
the set of nodes that
u is mapped to under
some automorphism

Automorphisms & Orbits

C

A

B

D

E

F

C

A

B

D

E

F

Def. An automorphism
is an isomorphism from
a graph to itself.

Orbit of a node u is
the set of nodes that
u is mapped to under
some automorphism

Main Speedup (#2)

1

2

3

6Number each
node of G

4

53

Main Speedup (#2)

1

2

3

6Number each
node of G

f : VH → VG

A mapping f induces
a numbering on H

4

53

Main Speedup (#2)

1

2

3

6Number each
node of G

f : VH → VG

A mapping f induces
a numbering on H4

5

3

Main Speedup (#2)

1

2

3

6Number each
node of G

f : VH → VG

A mapping f induces
a numbering on H4

5

3A

B

C

A < min{B,C}

C < min{B}

If we add these constraints, we
get only one possible mapping

Adding Constraints, Larger Example

(Figure from Grochow & Kellis, 2007)

Basic Algorithm, differences for symmetry breaking

For each node g ∈ G
For each node h ∈ H s.t. we haven’t
considered q ∈ Orbit(h):
If h can’t support g: continue

Let f = {(g!h)}
L = Extend(f, G, H, CH)
For q in L:
Output image of q

Remove g from G

q : VH → VG

Extend(f, G, H), symmetry breaking differences

If domain(f) = H: return [f]

Let m = some node in N(domain(f))
For each node u ∈ N(f(domain(f))):

If adding (m!u) to f keeps f as a
valid isomorphism
and (m!u) obeys the constraints
then:
Extend(f∪{(m!u)}, G, H)

g

h

domain(f)

N(domain(f))

f(domain(f))

N(f(domain(f)))

m

u

u

Results: Running Time

(Figure from Grochow & Kellis, 2007)

Results: BeneÞt of Symmetry Breaking

Really Large ÒmotifsÓ? Meaningful?

Occurred 27,720 times
in the real yeast PPI

network (but rarely in a
random network)

Really just a subgraph
of this part of the yeast

PPI: choose 4 nodes
from the clique and 3
nodes from the oval.

(Figure from Grochow & Kellis, 2007)

Other Advantages

¥ Since symmetry breaking ensures each match is
output only once, they donÕt need to keep track of
which graphs theyÕve already output

- save a lot of space

¥ Can be parallelized better

Spiritual Similarity to Color Coding

¥ Color Coding: make distinguishable things looks the
same

¥ Symmetry Breaking: make indistinguishable things
look different.

