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Network Design

You want to connect up several computers with a network, and
you want to run as little wire as possible.

It is feasible to directly connect only some pairs of computers.
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Minimum Spanning Tree Problem

Minimum Spanning Tree Problem

Given

• undirected graph G with vertices for each of n objects

• weights d(u, v) on the edges giving the distance u and v ,

Find the subgraph T that connects all vertices and minimizes∑
{u,v}∈T d(u, v).

T will be a tree. Why?

If there was a cycle, we could remove any edge on the cycle to get
a new subgraph T ′ with smaller

∑
{u,v}∈T ′ d(u, v).
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MST History

• Studied as far back as 1926 by Bor̊uvka.

• We’ll see algorithms that take O(m log n) time,
where m is number of edges.

• Best known algorithm takes time O(mα(m, n)),
where α(m, n) is the “inverse Ackerman” function
(grows very slowly).

• Still open: Can you find a O(m) algorithm?



Assumption

We assume no two edges have the same edge cost.

If this doesn’t hold true, we can add a very small value εe to the
weight of every edge e.



Cut Property

Theorem

Let S be a subset of nodes, with |S | ≥ 1 and |S | ≤ n.
Every MST contains the edge e = (v ,w) with v ∈ S and
w ∈ V − S that has minimum weight.
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Cut Property, Proof

Suppose T doesn’t contain e. Because T is connected, it must
contain a path P between v and w . P must contain some edge f
that “crosses the cut.”

The subgraph T ′ = T − f ∪ e has lower weight than T . T ′ is
acyclic because the only cycle in T ′∪ f is eliminated by removing f .
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Cycle Property

Theorem (Cycle Property)

Let C be a cycle in G. Let e = (u, v) be the edge with maximum
weight on C. Then e is not in any MST of G.

Suppose the theorem is false. Let T be a MST that contains e.

Deleting e from T partitions vertices into 2 sets:

S (that contains u) and V − S (that contains v).

Cycle C must have some other edge f that goes from S and V −S .

Replacing e by f produces a lower cost tree, contradicting that T
is an MST.



Cycle Property, Picture
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MST Property Summary

1 Cut Property: The smallest edge crossing any cut must be in
all MSTs.

2 Cycle Property: The largest edge on any cycle is never in any
MST.



Greedy MST Rules

All of these greedy rules work:

1 Add edges in increasing weight, skipping those whose addition
would create a cycle. (Kruskal’s Algorithm)

2 Run TreeGrowing starting with any root node, adding the
frontier edge with the smallest weight. (Prim’s Algorithm)

3 Start with all edges, remove them in decreasing order of
weight, skipping those whose removal would disconnect the
graph. (“Reverse-Delete” Algorithm)



Kruskal’s Algorithm

Kruskal’s Algorithm: Add edges in increasing weight, skipping
those whose addition would create a cycle.

Theorem

Kruskal’s algorithm produces a minimum spanning tree.

Proof. Consider the point when edge e = (u, v) is added:

v
u

S = nodes to which v has a path
just before e is added

u is in V-S
(otherwise there 

would be a cycle)

e = (u,v)



Prim’s Algorithm

Prim’s Algorithm: Run TreeGrowing starting with any root
node, adding the frontier edge with the smallest weight.

Theorem

Prim’s algorithm produces a minimum spanning tree.
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S = set of nodes already in 

the tree when e is added 



Reverse-Delete Algorithm

Reverse-Delete Algorithm: Remove edges in decreasing order of
weight, skipping those whose removal would disconnect the graph.

Theorem

Reverse-Delete algorithm produces a minimum spanning tree.

v
u

e = (u,v)

Because removing e won't disconnect the graph, 
there must be another path between u and v

Because we're removing in order of decreasing weight, 
e must be the largest edge on that cycle.



Implementation: Prim’s & Dijkstra’s

• Store the nodes on the frontier in a priority queue, using key:

Prim’s: p(v) = min
(u,v):u∈S

d(u, v)

Dijkstra’s: s(v) = min
(u,v):u∈S

dist(s, u) + d(u, v)

• ExtractMin takes O(1) time, and we do O(n) of them.

• ChangeMin takes O(log n) time, and we do O(m) of them.

Total run time: O(m log n).

Can implement Kruskal’s algorithm in O(m log n) time too, with
more complicated data structures.



Clustering

Clustering: an application of MST



Clustering

You’re given n items and the distance d(u, v) between each of
pair.

d(u, v) may be an actual distance, or some abstract representation
of how dissimilar two things are.

(What’s the “distance” between two species?)

Our Goal: Divide the n items up into k groups so that the
minimum distance between items in different groups is maximized.
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Our Goal: Divide the n items up into k groups so that the
minimum distance between items in different groups is maximized.
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Maximum Minimum Distance

Idea:

• Maintain clusters as a set of connected components of a
graph.

• Iteratively combine the clusters containing the two closest
items by adding an edge between them.

• Stop when there are k clusters.

This is exactly Kruskal’s algorithm.

The “clusters” are the connected components that Kruskal’s
algorithm has created after a certain point.

Example of “single-linkage, agglomerative clustering.”
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Proof of Correctness

Another way too look at the algorithm: delete the k − 1 most
expensive edges from the MST.

The spacing d of the clustering C that this produces is the length
of the (k − 1)st most expensive edge.

Let C ′ be a different clustering. We’ll show that C ′ must have the
same or smaller separation than C .



Proof of correctness, 2

Since C 6= C ′, there must be some pair pi , pj that are in the same
cluster in C but different clusters in C ′.

Cr
C's

C't

pi
pj

Together in C =⇒ path P between pi , pj with all edges ≤ d .

Some edge of P passes between two different clusters of C ′.

Therefore, separation of C ′ ≤ d .



Class So Far

6 lectures:

• Stable Marriage

• Topological Sort

• Detecting bipartite graphs

• Interval Scheduling

• Interval Partitioning

• Minimal Lateness Scheduling

• Optimal Caching

• Minimum Spanning Tree (3 Algs)

• Dijkstra’s algorithm (proof of correctness)

• Matriods

• Min cost aboresences
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