Multiple Sequence Alignment

CMSC 423
Carl Kingsford

if (index >= ticks. length-2 || index
return months [d.getMonth()] + ' +
else
return months [d.getMonth()] + ' +
else return '';
else if (smallStep >= MILLIS_PER_DAY) return
else return d.getDate();
\};
/**
* custom zoom behavior when using the scrol
*/
var myzoom = function (e, w) \{
speed $=1 / 7$; // $1 / 48$;
var obj = e;
function mousewheel() ;
var $m=$ this.mouse();

```
labelColor: "white",
labelFont: "14px sans-serif",
backgroundColor: "black",
dotBarStyle: 'green',//'rgba(255, 128, 12
dotBarStyle: 'green', //' rgba(255, 128,
dotFillStyle: 'rgba(150,150,150,0.7)',
dotFillStyle: 'rgba(150,150,150,0.7)',
dotStrokeStyle: \({ }^{\text {r }}\) rgb(100, 100, 100)",
dotStrokeStyle: \(" \mathrm{rgb}(100,100,100) "\),
dotHighlightFill: \({ }^{\mathrm{rgb}(255,0,0) ",}\)
dotHighlightFill: "rgb(255, 0, 0)",
dotHighlightStroke: "rgba(100, 100, 100,0.3)
dotHighlightStroke: "rgba(100, 100,100,0.3)
dotBorderWidth: 1,
dotBarPaddingLeft: 0, // 10
dotBarPaddingRight: 0, // 10
height: 50,
topIndent: 16,
dotSize: 50,
+-186 lines: zoomButtonScaleFactor: 2
    var ticks = blah.d;
    var getTimelineLabel \(=\) function ( \(\mathrm{d}, \mathrm{ticks}\) ) \(\{\)
    var months = new Array('Jan', 'Feb', 'Mar', 'Apr
    var index = Math. round((d.getTime() - selecte
        var \(\mathrm{y}=\mathrm{d} . \mathrm{getFullYear();}\)
    if (smallStep >= MILLIS_PER_YEAR ) \{
        if (smallStep \(==10\) * MILLIS_PER_YEAR) re
        if (smaliStep \(=5 *\) MILLIS_PER_YEAR)
            if (ticks.length >25) return y* \(10=0\)
            else return y \(\% 5==0\) ? y : ' ;
+-10 lines: ticks per year
else return \({ }^{\prime \prime}\);
            else
            if (index*4 \(=0\) ) return months [d.get
            else return '';
    \}
    else if (smaliStep >= MILLIS_PER_WEEK)
            if (ticks.length < 20)
        return months[d.getMonth()] + ' " + d.
        olse
            if (indexe2 \(=\) = 0) return months[d.getHo
```


Qlse return ' ${ }^{\prime \prime}$

blse if (smallStep >= MILLIS_PER_DAY) return else return d.getDate();
\};
/**

* custom zoon behavior when using the scro
*/
var myzoom = function (e, w) \{
speed = 1/48;
var obj = e;
width $=\mathrm{w}$;
function mousewheel() \{
var m = this.mouse();

3rd source file here

Multiple Sequence Alignment (MSA)

Multiple sequence alignment: find more subtle patterns \& find common patterns between all sequence.

Generalizing Alignment to > 2 Strings

Input: Sequences $S_{1}, S_{2}, \ldots, S_{p}$
Let $\operatorname{cost}\left(x_{1}, x_{2}, \ldots x_{p}\right)$ be a user-supplied function that computes the quality of a column: an alignment between characters $x_{1}, x_{2}, \ldots x_{p}$.

- Goal: find alignment M to minimize \sum cost of the columns:

Slow Dynamic Programming

Suppose you had just 3 sequences.
Apply the same DP idea as sequence alignment for 2 sequences, but now with a 3-dimensional matrix

DP Recurrence for 3 sequences

$$
A[i, j, k]=\min \left\{\begin{array}{l}
\operatorname{cost}\left(x_{i}, y_{j}, z_{k}\right)+A[i-1, j-1, k-1] \\
\operatorname{cost}\left(x_{i},-,-\right)+A[i-1, j, k] \\
\operatorname{cost}\left(x_{i}, y_{j},-\right)+A[i-1, j-1, k] \\
\operatorname{cost}\left(-, y_{j}, z_{k}\right)+A[i, j-1, k-1] \\
\operatorname{cost}\left(-, y_{j},-\right)+A[i, j-1, k] \\
\operatorname{cost}\left(x_{i},-, z_{k}\right)+A[i-1, j, k-1] \\
\operatorname{cost}\left(-,-, z_{k}\right)+A[i, j, k-1]
\end{array}\right.
$$

Every possible pattern for the gaps.

Running time

- n^{3} subproblems, each takes 2^{3} time
$\Rightarrow \mathrm{O}\left(n^{3}\right)$ time.
- For p sequences: n^{p} subproblems, each takes 2^{p} time for the max and p^{2} to compute $\operatorname{cost}() \Rightarrow O\left(p^{2} n^{p} 2^{p}\right)$
- Even $\mathrm{O}\left(n^{3}\right)$ is often too slow for the length of sequences encountered in practice.

- One solution: approximation algorithm.

SP-Score

A particular cost() function, the SP-Score, is commonly used and allows us to design an approximation algorithm for the MSA problem.
$d_{M}\left(S_{i}, S_{i}\right)=$ the cost of the alignment between
S_{i} and S_{j} as implied by MSA M.

SP-Score(M) $=\sum_{i<j} d_{M}\left(S_{i}, S_{j}\right)$
= sum of all the scores of the pairwise alignments implied by M.

MSA

- A multiple sequence alignment (MSA) implies a pairwise alignment between every pair of sequences.
- This implied alignment need not be optimal, however:

$$
\text { match }=-1, \text { a mismatch }=1, \text { gap }=2
$$

Sequences: AT, A, T, AT, AT

Star Alignment Approximation

SP-Score

$\sum_{i} \mathrm{dm}_{\mathrm{m}}\left(\mathrm{S}_{\mathrm{i}}, \mathrm{S}_{\mathrm{c}}\right)$

Star Alignment Algorithm

Input: sequences $S_{1}, S_{2}, \ldots, S_{p}$

- Build all $O\left(p^{2}\right)$ pairwise alignments.
- Let $S_{c}=$ the sequence in $S_{1}, S_{2}, \ldots, S_{p}$ that is closest to the others.

That is, choose S_{c} to minimize:

$$
\sum_{i \neq c} a\left(S_{c}, S_{i}\right)
$$

- Progressively align all other sequences to S_{c}.

Progressive Alignment

- Build a multiple sequence alignment up from pairwise alignments.

Start with an alignment between S_{c} and some other sequence:
SC YFPHFDLSHGSAQVKAHGKKVGDALTLAVGHLDDLPGAL
S1 YFPHFDLSHG-AQVKG--KKVADALTNAVAHVDDMPNAL
Add 3rd sequence, say S2, and use the SC - S2 alignment as a guide, adding spaces into the MSA as needed.

SC - S2 alignment:
SC YFPHF-DLS-----HGSAQVKAHGKKVGDALTLAVGHL----DDLPGAL
S2 FFPKFKGLTTADQLKKSADVRWHAERII----NAVNDAVASMDDTEKMS
New \{SC, SI, S2\} alignment (red gaps added in SI):

```
SC YFPHF-DLS-----HGSAQVKAHGKKVGDALTLAVGHL----DDLPGAL
S1 YFPHF-DLS-----HG-AQVKG--KKVADALTNAVAHV----DDMPNAL
S2 FFPKFKGLTTADQLKKSADVRWHAERII----NAVNDAVASMDDTEKMS
```

Continue with S3, S4, ...

Performance

Assume the cost function satisfies the triangle inequality:

$$
\operatorname{cost}(x, y) \leq \operatorname{cost}(x, z)+\operatorname{cost}(z, y)
$$

Example: $\operatorname{cost}(\mathrm{A}, \mathrm{C}) \leq \operatorname{cost}(\mathrm{A}, \mathrm{T})+\operatorname{cost}(\mathrm{T}, \mathrm{C})$
cost of I
mutation from

$$
A \rightarrow C
$$

cost of a mutation from $A \rightarrow T$ and then from $T \rightarrow C$

STAR = cost of result of star algorithm under SP-score
OPT = cost of optimal multiple sequence alignment (under SP-score)

Theorem. If cost satisfies the triangle inequality, then STAR $\leq 2 \times$ OPT.

Example: if optimal alignment has cost IO, the star alignment will have cost ≤ 20.

Proof (1)

Theorem. If cost satisfies the triangle inequality, then STAR \leq 2OPT.

$$
\frac{\mathrm{STAR}}{\mathrm{OPT}} \leq 2
$$

For some B we will prove the 2 statements:

$$
\begin{aligned}
& \mathrm{STAR} \leq 2 B \\
& \mathrm{OPT} \geq B
\end{aligned}
$$

This will imply:

$$
\Longrightarrow \frac{\mathrm{STAR}}{\mathrm{OPT}} \leq \frac{2 B}{B}=2
$$

Proof (2)

Theorem. If cost satisfies the triangle inequality, then STAR \leq 2OPT.

$$
\begin{aligned}
2 \cdot \operatorname{STAR} & =\sum_{i j} d_{\mathrm{STAR}}\left(S_{i}, S_{j}\right) \text { defn of SP-score } \\
\begin{aligned}
\text { by triangle } \\
\text { inequality }
\end{aligned} & \leq \sum_{i j}\left(d_{\mathrm{STAR}}\left(S_{i}, S_{c}\right)+d_{\mathrm{STAR}}\left(S_{c}, S_{j}\right)\right) \\
\begin{array}{r}
\text { because STAR } \\
\text { ment is optimal } \\
\text { airs involving Sc }
\end{array} & =\sum_{i j}\left(\mathrm{a}\left(S_{i}, S_{c}\right)+\mathrm{a}\left(S_{c}, S_{j}\right)\right) \\
\text { distribute } \Sigma & =\sum_{i j} \mathrm{a}\left(S_{i}, S_{c}\right)+\sum_{i j} \mathrm{a}\left(S_{c}, S_{j}\right) \\
& \leq 2 p \sum_{i} \mathrm{a}\left(S_{i}, S_{c}\right) \begin{array}{l}
\text { sums are the same } \\
\text { and each term appears } \\
\leq \mathrm{p}(\# \text { of sequences) } \\
\text { times. }
\end{array}
\end{aligned}
$$

Proof (3)

Theorem. If cost satisfies the triangle inequality, then STAR $\leq 2 O P T$.

$$
2 \cdot \mathrm{OPT}=\sum_{i j} d_{\mathrm{OPT}}\left(S_{i}, S_{j}\right) \quad \text { defn of SP-score }
$$

optimal pairwise alignment
is \leq pairwise alignment

$$
\geq \sum_{i j} \mathrm{a}\left(S_{i}, S_{j}\right)
$$

$$
\geq p \sum \mathrm{a}\left(S_{i}, S_{c}\right)
$$

End of Proof

For some B we will prove the 2 statements:

$$
\begin{aligned}
& \mathrm{STAR} \leq 2 B \\
& \mathrm{OPT} \geq B
\end{aligned}
$$

This will imply:

$$
\Longrightarrow \frac{\mathrm{STAR}}{\mathrm{OPT}} \leq \frac{2 B}{B}=2
$$

$$
\begin{aligned}
2 \cdot S T A R & \leq 2 p \sum_{i} \mathrm{a}\left(S_{i}, S_{c}\right) \\
2 \cdot O P T & \geq p \sum_{i} \mathrm{a}\left(S_{i}, S_{c}\right)
\end{aligned}
$$

$$
\Longrightarrow \frac{\mathrm{STAR}}{\mathrm{OPT}} \leq \frac{2 p \sum_{i} \mathrm{a}\left(S_{i}, S_{c}\right)}{p \sum_{i} \mathrm{a}\left(S_{i}, S_{c}\right)}=2
$$

Consensus Sequence

For every column j, choose $\mathrm{c} \in \sum$ that minimizes $\sum_{i} \operatorname{cost}\left(c, S_{i}[j]\right) \backsim$
(typically this means the most common letter)

S1 YFPHF-DLS-----HGSAQVKAHGKKVG-----DALTLAVAHLDDLPGAL
S2 YFPHF-DLS-----HG-AQVKG-GKKVA-----DALTNAVAHVDDMPNAL
S3 FFPKFKGLTTADQLKKSADVRWHAERII-----NAVNDAVASMDDTEKMS
S4 LFSFLKGTSEVP--QNNPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATL
CO YFPHFKDLS-----HGSAQVKAHGKKVG-----DALTLAVAHVDDTPGAL

- Consensus is a summarization of the whole alignment.
- Consensus sequence is sometimes used as an estimate for the ancestral sequence.
- Sometimes the MSA problem is formulated as: find MSA M that minimizes: $\sum_{i} d_{M}\left(C O, S_{i}\right)$

Profiles

- Another way to summarize an MSA:

$$
\begin{array}{ll}
\text { S1 } & \text { ACG-TT-GA } \\
\text { S2 } & \text { ATC-GTCGA } \\
\text { S3 } & \text { ACGCGA-CC } \\
\text { S4 } & \text { ACGCGT-TA }
\end{array}
$$

Column in the alignment

	1	2	3	4	5	6	7	8	9	matrix R
A	1	0	0	0	0	0.25	0	0	0.75	
C	0	0.75	0.25	0.5	0	0	0.25	0.25	0.25	Fraction of time
G	0	0	0.75	0	0.75	0	0	0.5	0	given column had
T	0	0.25	0	0	0.25	0.75	0	0.25	0	
-	0	0	0	0.5	0	0	0.75	0	0	

CLUSTLW

- CLUSTLW is a widely used, "classical" heuristic multiple aligner.
- Not the fastest, not the most accurate, but pretty good.
- Large \# of heuristic tricks included in the software, but basic idea is straightforward:

Profile-based Alignment

Score of matching character x with column j of the profile:

$$
P(x, j)=\sum_{c \in \Sigma} \operatorname{sim}(x, c) \times R[c, j]
$$

$\operatorname{sim}(x, c)=$ how similar character x is to character c .

$$
A[i, j]=\max \begin{cases}A[i-1, j-1]+P\left(x_{i}, j\right) & \text { align } x_{i} \text { to column } j \\ A[i-1, j]+\text { gap } & \text { introduce gap into profile } \\ A[i, j-1]+P("-", j) & \text { introduce gap into } x\end{cases}
$$

Recap

- Multiple sequence alignments (MSAs) are a fundamental tool.They help reveal subtle patterns, compute consistent distances between sequences, etc.
- Quality of MSAs often measured using the SP-score: sum of the scores of the pairwise alignments implied by the MSA.
- Same DP idea as pairwise alignment leads to exponentially slow algorithm for MSA for general p.
- 2-approximation obtainable via star alignments.
- MSAs often used to create profiles summarizing a family of sequences.

