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Module-detection for Function Prediction

¥ Biological networks generally modular
(Hartwell+, 1999)

¥ We can try to bnd the modules within a network.

¥ Once we bnd modules, we can look at over-represented
functions within a module, e.q.:

- If a majority of the proteins within a module have annotation
A, predict annotation A for the other proteins in the module.

¥ | Graph clustering methods

- Min Multiway Cut, Graph Summarization, VI-Cut: examples
weOve already seen.

- Methods often borrowed from other Ocommunity detectionO
applications.



Modularity
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Examples

Communities Assignhed
to a small graph

Note: maximizing
modularity will bnd itOs
own # of clusters

Communities assigned to
a random graph



Modularity Algorithm #1

¥ Modularity is NP-hard to optimize (Brandes, 2007)

¥ Greedy Heuristic: (Newman, 2003)

- C =tnvial clustering with each node In its own cluster
- Repeat:

¥ Merge the two clusters that will increase the modularity
by the largest amount

¥ Stop when all merges would reduce the modularity.



Karate Club (again)

Newman-Girvan, 2004

Only 3 is in the OwrongO
community.



Maximizing Modularity via a
Spectral Technique



Another View of Modularity
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Goal: Maximize modularity
¥ Try to bPnd £1 vector s that maximizes the
modularity.
¥ Start with the case above: only two groups.
¥ Then show how to extend to ! 2 groups.

¥ Will use some ideas from linear algebra.
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To Maximize Q

Q= (uf9)?%3

¥ If we were allowed to choose any s weOd pick the one
that is parallel to u;.

¥ But: s; must be +1 or -1.
This IS a severe restriction.

¥ So: maximize u:#, the projection of s along vector u;.

K

To do this: chooses;, = 1 if u; > 0, ands; = -1 if u; # 0.



Subsequent Splits
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Karate Club Results: Exactly Right
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Greedy Improvement

¥ Given a partition of the network |
largest increase

¥ Repeat: might be negative

- Find the vertex that would yield the
If it were moved into a different community
AND that has not yet been moved

- Move the vertex into that new community

¥ Return the best partitioning ever observed

Similar to the Kernighan-Lin
graph partitioning heuristic
(details in a few slides)



Additional Results
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Krebs Political Books
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Complexes Biological Processes
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Summary: Modularity

¥

Modularity i1s widely used as a measure for how good
a clustering Is.

Particularly popular in social network analysis, but
used in other contexts as well (e.g. Brain networks).

Has a OresolutionO preference: for a given network,
will tend to prefer clusters of a particular size.

Often this means the clusters are too big.

A good example of where a spectral clustering
technique can work.



