Modularity

CMSC 858L

Module-detection for Function Prediction

- Biological networks generally modular (Hartwell+, 1999)
- We can try to find the modules within a network.
- Once we find modules, we can look at over-represented functions within a module, e.g.:
 - If a majority of the proteins within a module have annotation A, predict annotation A for the other proteins in the module.
- → Graph clustering methods
 - Min Multiway Cut, Graph Summarization, VI-Cut: examples we've already seen.
 - Methods often borrowed from other "community detection" applications.

Modularity

Modularity

 $e_{ii} = \%$ edges in module i

 $e_{ii} = |\{(u,v) : u \in V_i, v \in V_i, (u,v) \in E\}| / |E|$

 $a_i = \%$ edges with at least 1 end in module i

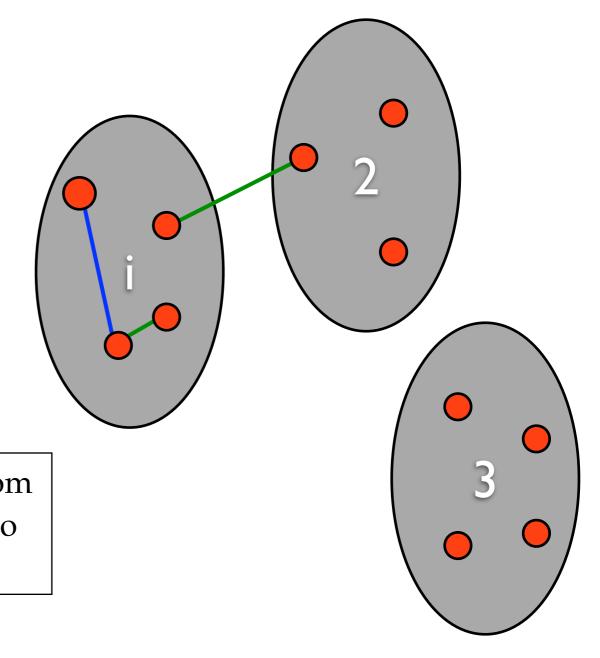
$$a_i = |\{(u,v) : u \in V_i, (u,v) \in E\}| / |E|$$

probability a random edge would fall into module i

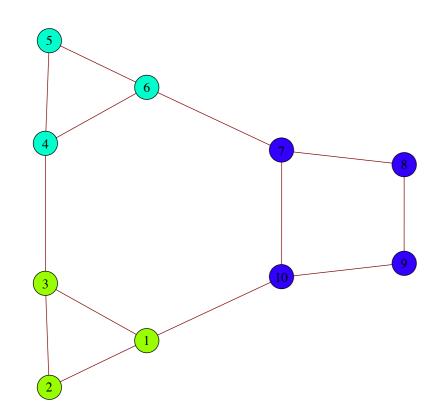
 $Q = \sum_{i=1}^{k} \left(e_{ii} - a_i^2 \right)$

probability edge is in module i

High modularity \Rightarrow more edges within the module that you expect by chance.

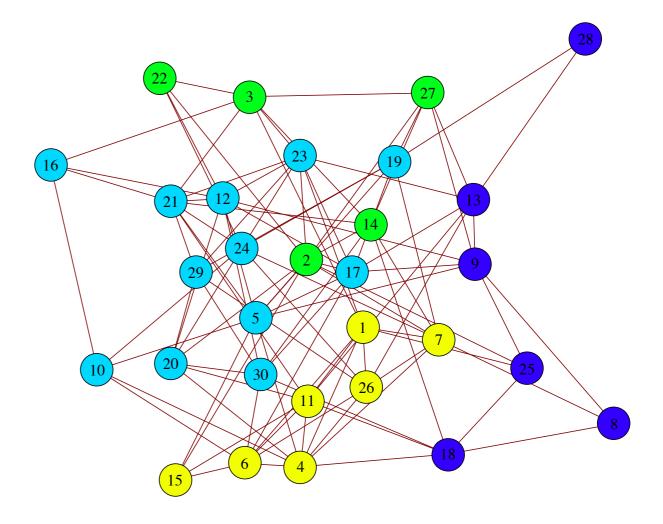


Examples



Communities Assigned to a small graph

Note: maximizing modularity will find it's own # of clusters



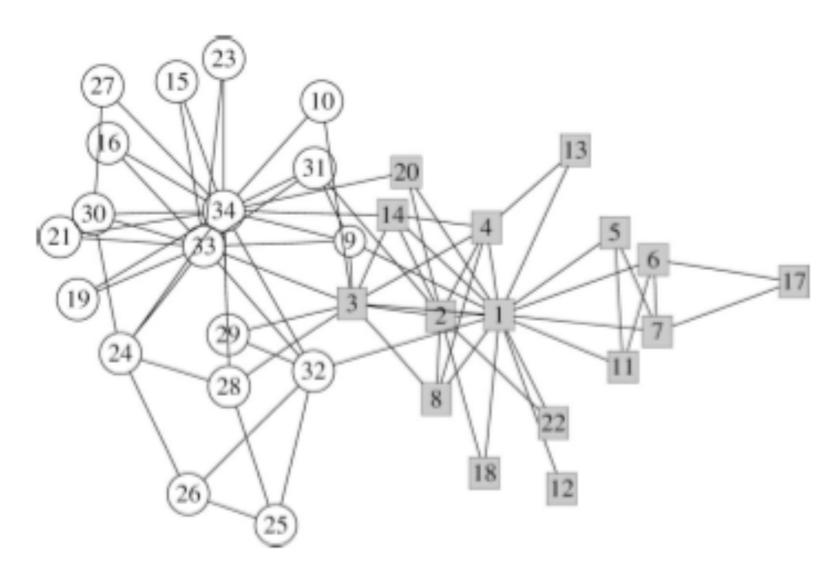
Communities assigned to a random graph

Modularity Algorithm #1

- Modularity is NP-hard to optimize (Brandes, 2007)
- Greedy Heuristic: (Newman, 2003)
 - C = trivial clustering with each node in its own cluster
 - Repeat:
 - Merge the two clusters that will increase the modularity by the largest amount
 - Stop when all merges would reduce the modularity.

Karate Club (again)

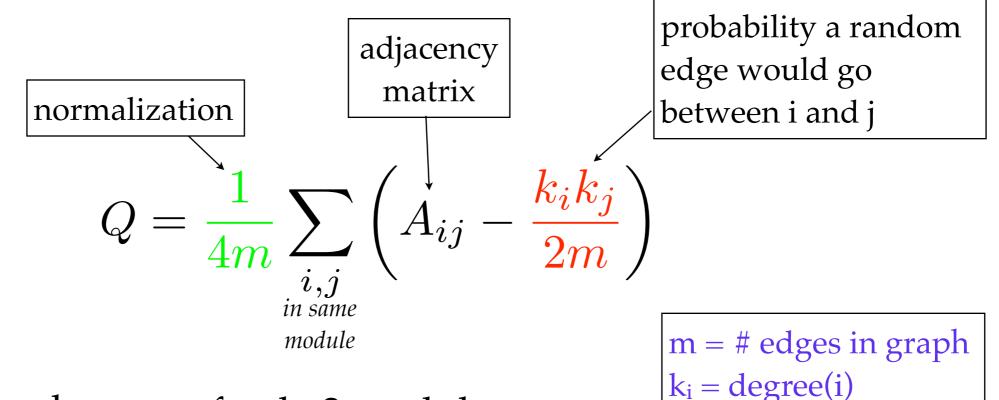
Newman-Girvan, 2004



Only 3 is in the "wrong" community.

Maximizing Modularity via a Spectral Technique

Another View of Modularity



Consider the case of only 2 modules.

Let $s_i = 1$ if node i is in module 1; -1 if node i is in module 2

$$Q = \frac{1}{4m} \sum_{i,j} \left(A_{ij} - \frac{k_i k_j}{2m} \right) (s_i s_j + 1)$$
$$= \frac{1}{4m} \sum_{i,j} \left(A_{ij} - \frac{k_i k_j}{2m} \right) s_i s_j$$

Goal: Maximize modularity

- Try to find ±1 vector **s** that maximizes the modularity.
- Start with the case above: only two groups.
- Then show how to extend to ≥ 2 groups.
- Will use some ideas from linear algebra.

$$Q = \frac{1}{4m} \sum_{i,j} \left(A_{ij} - \frac{k_i k_j}{2m} \right) s_i s_j$$

$$= \frac{1}{4m} \mathbf{s}^T B \mathbf{s} \leftarrow \begin{bmatrix} \mathbf{s} \text{ is a {-1,1}} \\ \mathbf{membership} \\ \text{vector} \end{bmatrix}$$
"modularity"

matrix

Let u_i (i = 1,...,n) be the eigenvectors of matrix B with eigenvalue β_i for vector u_i . (Assume $\beta_1 \ge \beta_2 \ge \beta_3 \ge \beta_4 \ge ... \ge \beta_n$)

Write s as:

where:

$$\mathbf{s} = \sum_{i} a_i u_i \qquad \qquad a_i = u_i^T \mathbf{s}$$

$$\mathbf{s} = \sum_{i} a_i u_i \qquad \qquad a_i = u_i^T \mathbf{s}$$

$$Q = \frac{1}{4m} \mathbf{s}^T B \mathbf{s}$$

$$\operatorname{drop the} (1/4m) \longrightarrow = \left(\sum_{i} a_i u_i^T\right) B \left(\sum_{j} a_j u_j\right)$$

$$= \left(\sum_{i} a_i u_i^T B\right) \left(\sum_{j} a_j u_j\right)$$

$$= \sum_{i} \sum_{j} a_i a_j u_i^T B u_j$$

Note:

- 1. $Bu_j = \beta_i u_j$
- 2. When $i \neq j$, $u_i^T B u_j = 0$ because $u_i \perp u_j$

$$Q = \sum_{i} (u_i^T \mathbf{s})^2 \beta_i$$

To Maximize Q

$$Q = \sum_{i} (u_i^T \mathbf{s})^2 \beta_i$$

- If we were allowed to choose any s we'd pick the one that is parallel to u_1 .
- **But:** s_i must be +1 or -1. This is a severe restriction.
- **So:** maximize u_1 ·**s**, the projection of s along vector u_1 .
- To do this: choose $s_i = 1$ if $u_1 > 0$, and $s_i = -1$ if $u_1 \le 0$.

Subsequent Splits

The modularity if this module was split according to s

The modularity of module g as it stands now

$$Q = \frac{1}{2m} \left[\frac{1}{2} \sum_{i,j \in g} B_{ij} (s_i s_j + 1) - \sum_{i,j \in g} B_{ij} \right]$$

$$= \frac{1}{2} \sum_{i,j \in g} B_{ij} s_i s_j + \frac{1}{2} \sum_{i,j \in g} B_{ij} - \sum_{i,j \in g} B_{ij} \right]$$

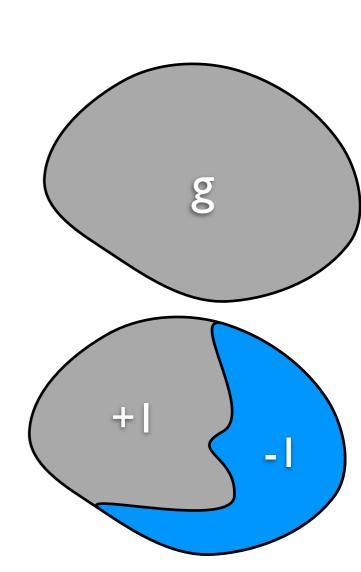
$$= \frac{1}{4m} \left[\sum_{i,j \in g} B_{ij} s_i s_j - \sum_{i,j \in g} B_{ij} \right]$$

$$\sum_{i,j \in g} B_{ij} = \sum_{i,j \in g} s_i s_j \delta_{i,j} \sum_{k \in g} B_{ik} \right]$$

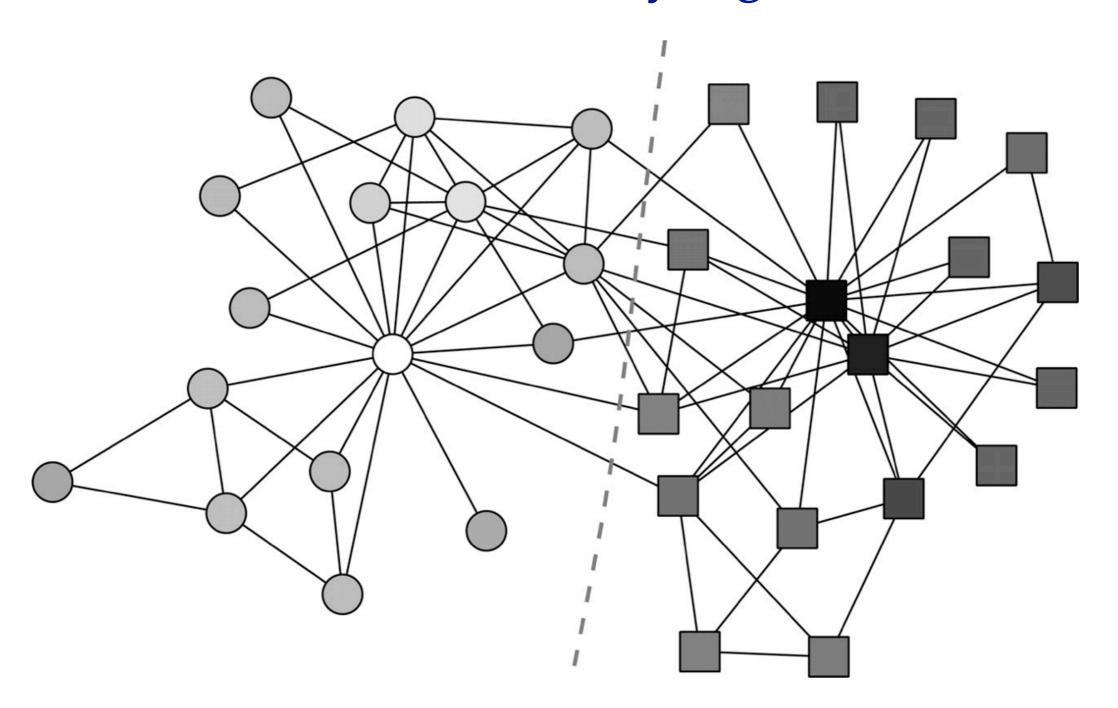
$$= \frac{1}{4m} \sum_{i,j \in g} \left[B_{ij} - \delta_{ij} \sum_{k \in g} B_{ik} \right] s_i s_j$$

$$\delta_{ij} = \begin{cases} 1, & \text{if } i = j \\ 0, & \text{if } i \neq j \end{cases}$$

$$= \frac{1}{4m} \mathbf{s}^T \mathbf{B}^{(g)} \mathbf{s},$$



Karate Club Results: Exactly Right



(Newman, 2006)

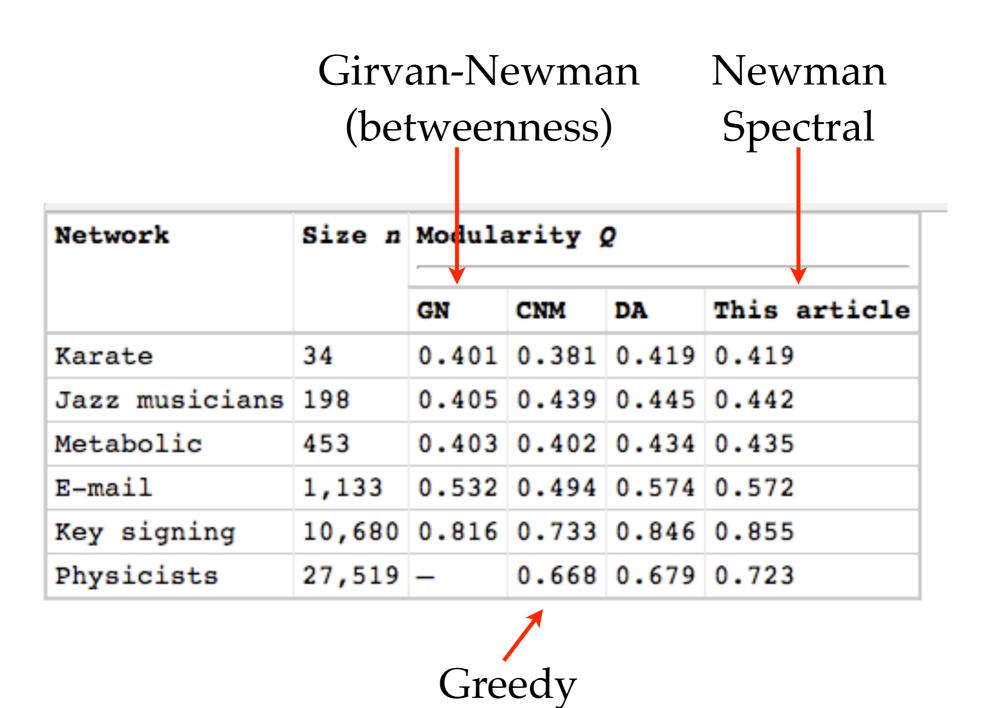
Greedy Improvement

- Given a partition of the network
- Repeat:

- largest increase might be negative
- Find the vertex that would yield the largest modularity increase if it were moved into a different community AND that has not yet been moved
- Move the vertex into that new community
- Return the best partitioning ever observed

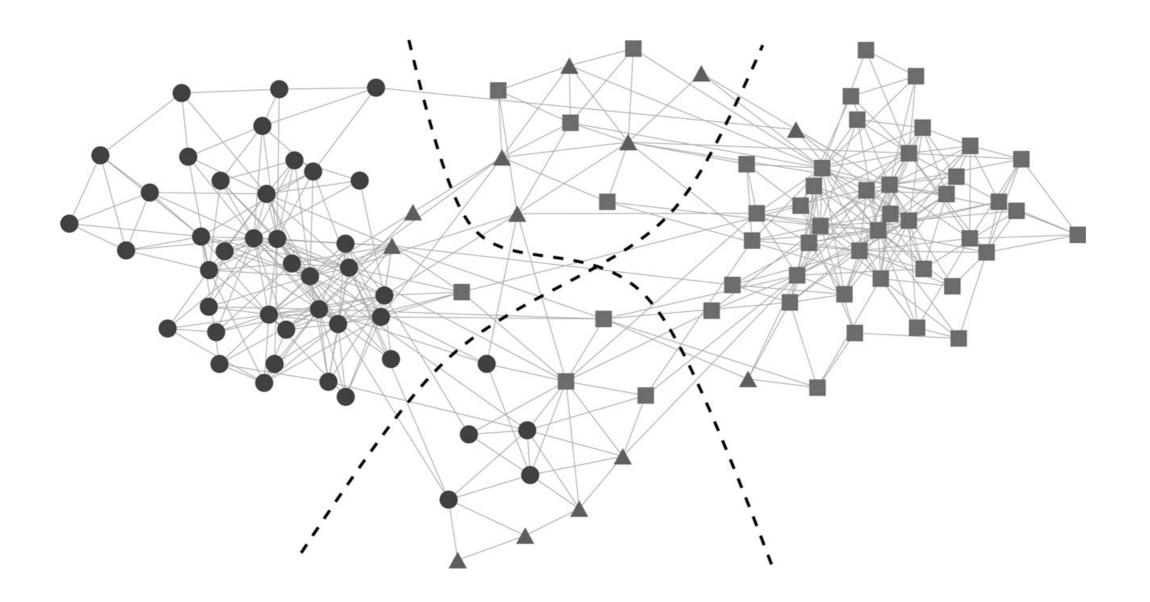
Similar to the Kernighan-Lin graph partitioning heuristic (details in a few slides)

Additional Results



Hierarchical

Krebs Political Books



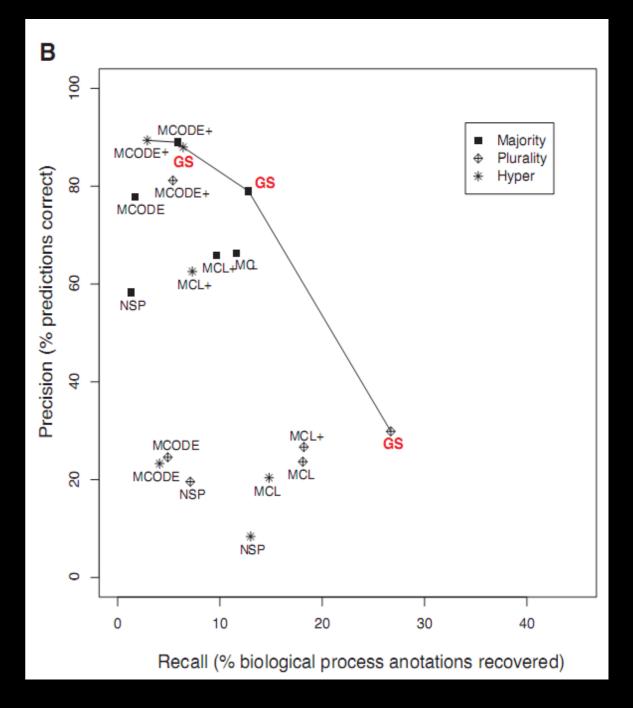
Nodes = political books; shape = conservative (squares) / liberal (circles) / "centrist" (triangles)

Edges = books frequently bought by the same readers on Amazon.com

Complexes

Α 100 MCODE+ Majority Plurality * MCODE+ Precision (% predictions correct) Hyper MCÖDE+ 8 MCODE ⊕ MCL+ * MCL+ NSP ⊕ MČL * MCL 20 MCODE MCODE NSP * NSP 0 10 20 30 40 Recall (% complex annotations recovered)

Biological Processes



"+" indicates parameters tuned to maximize precision

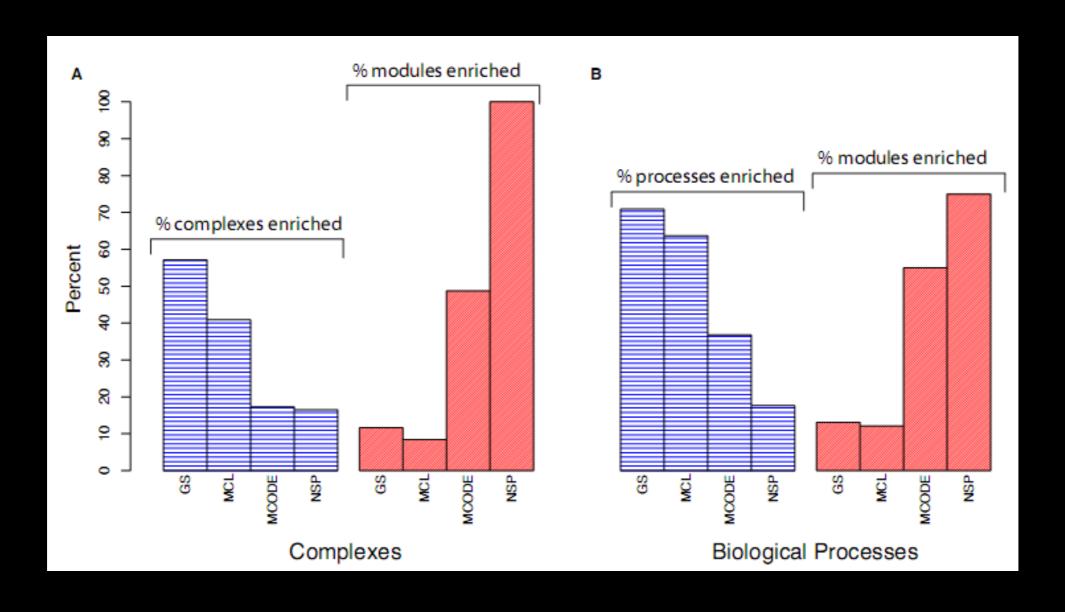
All GS predictions are Pareto optimal

Many unique predictions made by each algorithm

% Modules Enriched

A lower % of GS modules are enriched for some annotation, but not indicative of predictive performance.

"Easy" to get legitimate statistical significant enrichment.



Summary: Modularity

- Modularity is widely used as a measure for how good a clustering is.
- Particularly popular in social network analysis, but used in other contexts as well (e.g. Brain networks).
- Has a "resolution" preference: for a given network,
 will tend to prefer clusters of a particular size.
- Often this means the clusters are too big.
- A good example of where a spectral clustering technique can work.