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Module-detection for Function Prediction

e Biological networks generally modular
(Hartwell+, 1999)

e We can try to find the modules within a network.

® Once we find modules, we can look at over-represented
functions within a module, e.g.:

- If a majority of the proteins within a module have annotation
A, predict annotation A for the other proteins in the module.

e = Graph clustering methods

- Min Multiway Cut, Graph Summarization, VI-Cut: examples
we’ve already seen.

- Methods often borrowed from other “community detection”
applications.



Modularity



Modularity
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Communities Assigned
to a small graph

Note: maximizing
modularity will find it’s
own # of clusters

Communities assigned to
a random graph



Modularity Algorithm #1

¢ Modularity is NP-hard to optimize (Brandes, 2007)

e Greedy Heuristic: (Newman, 2003)
- C=trivial clustering with each node in its own cluster
- Repeat:

e Merge the two clusters that will increase the modularity
by the largest amount

e Stop when all merges would reduce the modularity.



Karate Club (again)

Newman-Girvan, 2004

Only 3 is in the “wrong”
community.



Maximizing Modularity via a
Spectral Technique



Another View of Modularity
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Goal: Maximize modularity
e Try to find £1 vector s that maximizes the
modularity.
e Start with the case above: only two groups.
® Then show how to extend to > 2 groups.

e Will use some ideas from linear algebra.
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Let u; (i = 1,...,n) be the eigenvectors of matrix B with eigenvalue
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To Maximize Q

e [f we were allowed to choose any s we’d pick the one
that is parallel to u;.

® But:s; mustbe +1 or -1.
This is a severe restriction.

e So: maximize u;'s, the projection of s along vector u;.

e To do this: chooses;=1if u; >0, and s; =-1 if u; < 0.



Subsequent Splits
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Karate Club Results: Exactly Right
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Greedy Improvement

e Given a partition of the network ,
largest increase

® Repeat: might be negative

- Find the vertex that would yield the
if it were moved into a different community
AND that has not yet been moved

- Move the vertex into that new community

® Return the best partitioning ever observed

Similar to the Kernighan-Lin
graph partitioning heuristic
(details in a few slides)



Additional Results

Network
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Krebs Political Books
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Nodes = political books; shape = Edges = books frequently bought
conservative (squares) / liberal by the same readers on

(circles) / “centrist” (triangles) Amazon.com
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% Modules Enriched

A lower % of GS modules are enriched for some annotation, but not
indicative of predictive performance.

“Easy” to get legitimate statistical significant enrichment.
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Summary: Modularity

¢ Modularity is widely used as a measure for how good
a clustering is.

e Particularly popular in social network analysis, but
used in other contexts as well (e.g. Brain networks).

e Has a “resolution” preference: for a given network,
will tend to prefer clusters of a particular size.

e Often this means the clusters are too big.

e A good example of where a spectral clustering
technique can work.



