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(and other clustering algorithms)



Comparing Clustering Algorithms

Brohee and van Helden (2006) compared 4 graph clustering 
algorithms for the task of finding protein complexes:

Used same MIPS complexes that we’ve seen before 
as a test set.

• MCODE 
• RNSC – Restricted Neighborhood Search Clustering
• SPC – Super Paramagnetic Clustering
• MCL – Markov Clustering

Created a simulated network data set.



Simulated Data Set

220 MIPS complexes (similar to the set 
used when we discussed VI-Cut and 
graph summarization).

Aadd,del := this clique graph with (add)
% random edges added and (del)% 
edges deleted.

Created a clique for each complex. 
Giving graph A (at right)

(Brohee and van 
Helden, 2006)

A100,40 = 

Also created a (!?) random graph R by 
shuffling edges and created Radd,del for 
the same choices of (add) and (del).



RNSC
RNSC (King, et al, 2004): Similar in spirit to the Kernighan-Lin 
heuristic, but more complicated: 

1. Start with a random partitioning.

2. Repeat: move a node u from one cluster to another cluster C, 
trying to minimize this cost function:

3. Add u the “FIXED” list for some number of moves.

4. Occasionally, based on a user defined schedule, destroy some 
clusters, moving their nodes to random clusters.

5. If no improvement is seen for X steps, start over from Step 2, 
but use a more sensitive cost function:

# neighbors of u that are not in the same cluster +
# of nodes co-clustered with u that are not its neighbors

Approximately: Naive cost function scaled 
by the size of cluster C



MCODE
Bader and Hogue (2003) use a heuristic to find dense regions 
of the graph.

Key Idea. A k-core of G is an induced subgraph of G such that 
every vertex has degree ≥ k.

2-core

Not part of 
a 2-core

u

A local k-core(u, G) is a k-core in the subgraph of G induced by {u} ∪ N(u).
A highest k-core is a k-core such that there is no (k+1)-core.



MCODE, continued

1. The core clustering coefficient CCC(u) is computed for each vertex u:

2. Vertices are weighted by khighest(u) × CCC(u), where khighest(u) is the 
largest k for which there is a local k-core around u.

3. Do a BFS starting from the vertex v with the highest weight wv, 
including vertices with weight ≥ TWP × wv.

4. Repeat step 3, starting with the next highest weighted seed, 
and so on.

CCC(u) = the density of the highest, local k-core of u.

In other words, it’s the density of the highest k-core in 
the graph induced by {u} ∪ N(u).

“Density” is the ratio of existing edges to possible edges.



MCODE, final step

Post-process clusters according to some options:

Filter. Discard clusters if the do not contain a 2-core.

Fluff. For every u in a cluster C, if the density of {u} ∪ N(u) 
exceeds a threshold, add the nodes in N(u) to C if they are not part C1, 
C2, ..., Cq. (This may cause clusters to overlap.)

uv

Ci

Cj

Haircut. 2-core the final clusters (removes tree-like regions).



Comparison – 40% edges removed; varied % added
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Representative test; MCL generally outperformed others.

“Sensitivity” := %complex covered by its 
best matching cluster.

PPV is % cluster covered by its 
best matching complex.



MCL



Motivation

(1) Number of u-v paths of length k is larger if u,v are 
in the same dense cluster, and smaller if they belong to 
different clusters.

(2) A random walk on the graph won’t leave a dense 
cluster until many of its vertices have been visited.

(3) Edges between clusters are likely to be on many 
shortest paths.

van Dongen (2000) proposes the following intuition for the 
graph clustering paradigm: 

Think driving in a city: (1) if you’re going from u to v, there are lots of 
ways to go; (2) random turns will keep you in the same neighborhood; 
(3) bridges will be heavily used.

Girvan-Newman



Structural Units of a Graph

k-bond. A maximal subgraph S with all nodes having degree ≥ k in S.

k-component. A maximal subgraph S such that every pair u, v ∈ S is 
connected by k edge-disjoint paths in S.

k-block. A maximal subgraph S such that every pair u, v ∈ S is connected 
by k vertex-disjoint paths in S.

k-blocks of a graph 
(van Dongen, 2000):

(k+1)-blocks nest 
inside k-blocks.



Structural Units of a Graph

k-bond. A maximal subgraph S with all nodes having degree ≥ k in S.
k-component. A maximal subgraph S such that every pair u, v ∈ S is 
connected by k edge-disjoint paths in S.
k-block. A maximal subgraph S such that every pair u, v ∈ S is connected 
by k vertex-disjoint paths in S.

Every k-block ⊆ some k-component Every k-component ⊆ some k-bond

All vertices of a k-component 
must have degree ≥ k in S.

(If degree(u) < k, u couldn’t have 
k edge disjoint paths to v in S.

k vertex-disjoint paths are all 
edge-disjoint. 

Hence if u,v are connected by k 
vertex-disjoint paths in S, they 
are connected by k edge-disjoint 
paths in S.

Thm. (Matula) The k-components form equivalence classes (they 
don’t overlap).



Problem with k-blocks as clusters

The clustering is very sensitive to node degree and to  particular 
configurations of edge-disjoint paths.

Example 1. Red shaded region is nearly a complete graph (missing only 
one edge), yet each of its nodes is in its own 3-block.

(van Dongen, 2000):

Example 2. Blue 
shaded region can’t 
be in a 3-block with 
any other vertex (b/c 
it has degree 2), but 
really it should be 
with the K4 subgraph 
it is next to.



Number of Length-k Paths

Let A be a the adjacency matrix of an unweighted simple 
graph G.    Ak is A ⋅ A ⋅ ... ⋅ A  (k times)

Thm. The (i,j) entry of Ak, denoted (Ak)ij , is the number of 
paths of length k starting at i and ending at j.

Proof. By induction on k. When k = 1, A directly gives the 
number (0 or 1) of length 1 paths.  For k > 1: 

(Ak)ij = (Ak−1A)ij =
n�

r=1

(Ak−1
ir Arj)

i r j

Ak−1
ir

Arj

Note: the paths do not 
have to be simple.



k-Path Clustering

Idea. Use Zk(u,v) := (Ak)uv as a similarity matrix.

k is an input parameter.

Given Zk(u,v), for some k, use it as a similarity matrix and 
perform single-link clustering.

Single-link clustering of matrix M: 
Throw out all entries of M that are < threshold t
Return connected components of remaining edges.

Called single-link clustering because a single “good” edge 
can merge two clusters.



Problem with k-Path Clustering

Consider Z2:
Z2(a,b) = 1, and
Z2(a,c) = 1

But intuitively, a,b are more 
closely coupled than a,c

Consider Z3:
Z3(a,b) = 2, and
Z3(a,d) = 2   [Why?]

But intuitively, a,b are more 
closely coupled than a,d

While there are more short paths 
between a & b than between other 
pairs, half of the short paths are of odd 
length and half are of even length.

(van Dongen, 2000)



Problem with k-Path Clustering

Consider Z2:
Z2(a,b) = 1, and
Z2(a,c) = 1

But intuitively, a,b are more 
closely coupled than a,c

Consider Z3:
Z3(a,b) = 2, and
Z3(a,d) = 2   [Why?]

But intuitively, a,b are more 
closely coupled than a,d

While there are more short paths 
between a & b than between other 
pairs, half of the short paths are of odd 
length and half are of even length.

Solution. Add self-loops to 
every node.

(van Dongen, 2000)



Example k-path clustering. (van Dongen, 2000)

Using k=2, Z2(u,v) := (A2)uv as the similarity matrix.



Random Walks On an unweighted graph: Start at a vertex, 
choose an outgoing edge uniformly at 
random, walk along that edge, and repeat.

On a weighted graph: Start at a vertex u, 
choose an incident edge e with weight we with 
probability 

we / ∑d wd

where d ranges over the edges incident to u, 
walk along that edge, and repeat.

Transition matrix. If AG is the adjacency 
matrix of graph G, we form TG by normalizing 
each row to sum to 1:

∑ = 1

TG =





a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44







Random Walks, 2

u

w
Suppose you start at u. What’s the 
probability you are at w after 3 steps?

Let vu be the vector that is 0 
everywhere except index u.

At step 0, vu[w] gives the 
probability you are at node w.

After 1 step, (TGvu)[w] gives the 
probability that you are at w.

After k steps, the probability that 
you are at w is: 

(TGkvu)[w]

In other words, TGkvu is a vector giving our 
probability of being at any node after taking k steps.



Random Walks for Finding Clusters

TGkvu is a vector giving our probability of being at any node 
after taking k steps and starting from u.

We don’t want to choose a starting point. Instead of vu we could 
use the vector vuniform with every entry = 1/n.

But then for clustering purposes, vuniform just gives a scaling 
factor, so we can ignore it and focus on TGk =: Tk

Tk[i,j] gives the probability that we will cross from i to j on step k. 

If i, j are in the same dense region, you expect Tk[i,j] to be higher.



Example (van Dongen, 2000)

The probability tends 
to spread out quickly.



Second Key Idea
According to some schedule, apply an “inflation” operator to the matrix. 





p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34

p41 p42 p43 p44



 �→





pr
11 pr

12 pr
13 pr

14

pr
21 pr

22 pr
23 pr

24

pr
31 pr

32 pr
33 pr

34

pr
41 pr

42 pr
43 pr

44



 �→

Inflation(M, r) :=

Rescale 
columns

The affect will be to heighten the contrast between the existing small 
differences.  (As in inflation in cosmology.)





0.25
0.25
0.25
0.25



 �→





0.25
0.25
0.25
0.25









0.25
0.25
0.25
0.25
0




�→





0.25
0.25
0.25
0.25
0









0.3
0.3
0.2
0.2



 �→





0.346
0.346
0.154
0.154





Examples. (r=2)
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The algorithm

MCL(G, {ei}, {ri}):

# Input: 
#   Graph G, 
#   sequence of powers ei, and 
#   sequence of inflation parameters rk

Add weighted loops to G and compute TG,1 =: T1

for k = 1,...,∞:

T := Inflate(rk, Power(ek, T))

if T ≈ T2 then break;

Treat T as the adjacency matrix of a directed graph.

return the weakly connected components of T.

Weakly connected components = some 
strongly connected component + the nodes 
that can reach it



Animation

http://www.micans.org/mcl/ani/mcl-animation.html
http://www.micans.org/mcl/ani/mcl-animation.html


Impact of Inflation Parameter on A100,40

Inflation Parameter Inflation Parameter

# of complexes
F1-like measure

Avg. “Sensitivity”

PPV

(complex-wise) “Sensitivity” := %complex 
covered by its best matching cluster.

A protein 
complex A cluster (cluster-wise) PPV is % cluster 

covered by its best matching complex.

F1-like measure: sqrt(PPV × Sensitivity)

(Brohee and van 
Helden, 2006)



Implementation

• As written, the algorithm requires O(N2) space to store the 
matrix

• It requires O(N3) time if the number of rounds is considered 
constant (not unreasonable in practice, as convergence tends to 
be fast).

• This is generally too slow for very large graphs.

• Solution: Pruning

- Exact pruning: keep the m largest entries in each column 
[matrix multiplication becomes O(Nm2)

- Threshold pruning: keep entries that are above a threshold.

- Threshold is faster than exact pruning in practice



Summary

• MCL is a very successful graph clustering approach.

• Draws on intuition from random walks / “flow”

• But random walks tend to spread out over time 
(The same was true for Functional Flow)

• Inflation operator inhibits hits flatten of probabilities.

• Input parameters: powers and inflation coefficients.

• Overlapping clusters may be produced: the weakly 
connected components may overlap. This tends not to 
happen in practice because it is “unstable.”

- What’s a heuristic way to avoid overlapping clusters if you 
get them?



Summary of Function Prediction
• Functional flow

• Network neighborhood function prediction (majority, 
enrichment, etc.)

• Entropy / mutual information / variation of information

• Notion of node similarity (edge / node betweenness, dice 
distance, edge clustering coefficient)

• Graph partitioning algorithms:

- Minimum multiway cut / integer programming
- Graph summarization
- Modularity, Girvan-Newman algorithm, Newman spectral-based 

partitioning
- VI-CUT
- RNSC
- MCODE
- MCL  (random walks, k-paths clustering)
- k-cores, k-bonds, k-components


