Local Alignment CMSC 423

Representing edits as alignments

prin-ciple
|||| |||XX
prinncipal
(1 gap, 2 mm)

misspell
||| ||||
mis-pell
(1 gap)

aa-bb-ccaabb
|X || | | |
ababbbc-a-b(5 gaps, 1 mm)

prin-cip-le
|||| ||| |
prinncipal(3 gaps, 0 mm)

al-go-rithm-|| XX ||X | alKhwariz-mi (4 gaps, 3 mm)

Maximization vs. Minimization

Edit distance:

$$OPT(i,j) = \min \begin{cases} cost(a_i, b_j) + OPT(i-1, j-1) & match a_i, b_j \\ gap + OPT(i-1, j) & a_i \text{ is not matched} \\ gap + OPT(i, j-1) & b_j \text{ is not matched} \end{cases}$$

Sequence Similarity: replace min with a max and negate the parameters.

```
gap penalty \rightarrow gap benefit (probably negative) cost \rightarrow score
```


Local alignment between s and t: Best alignment between a subsequence of s and a subsequence of t.

Recall: Global Alignment Matrix

OPT(i,j) contains the score for the best alignment between:

the first *i* characters of string x [prefix *i* of x]

the first *j* character of string *y* [prefix *j* of *y*]

Local Alignment

Best alignment between a suffix of x[1..5] and a suffix of y[1..5]

A[i, j] = best score between:
 some suffix of x[1...i]
 some suffix of y[1...j]

How do we fill in the local
alignment matrix?
$$A[i, j] = \max \begin{cases} A[i, j-1] + \text{gap} \quad (1) \\ A[i-1, j] + \text{gap} \quad (2) \\ A[i-1, j-1] + \text{match}(i, j) \quad (3) \\ 0 \\ \end{bmatrix}$$
Best alignment

(1), (2), and (3): same cases as before:

gap in x, gap in y, match x and y

New case: 0 allows you to say the best alignment between a suffix of x and a suffix of y is the empty alignment.

Lets us "start over"

between

Local Alignment

- Initialize first row and first column to be 0.
- The score of the best local alignment is the largest value in the entire array.
- To find the actual local alignment:
 - start at an entry with the maximum score
 - traceback as usual
 - stop when we reach an entry with a score of 0

Local Alignment Python Code

```
def local align(x, y, score=ScoreParam(-7, 10, -5)):
    """Do a local alignment between x and y"""
    # create a zero-filled matrix
    A = make matrix(len(x) + 1, len(y) + 1)
    best = 0
    optloc = (0,0)
    # fill in A in the right order
    for i in xrange(1, len(y)):
        for j in xrange(1, len(x)):
            # the local alignment recurrance rule:
            A[i][j] = max(
               A[i][j-1] + score.gap,
               A[i-1][j] + score.gap,
               A[i-1][j-1] + (score.match if x[i] == y[j] else score.mismatch),
               0
            )
            # track the cell with the largest score
            if A[i][j] >= best:
                best = A[i][j]
                optloc = (i,j)
    # return the opt score and the best location
    return best, optloc
```

Local Alignment Python Code

```
def make_matrix(sizex, sizey):
    """Creates a sizex by sizey matrix filled with zeros."""
    return [[0]*sizey for i in xrange(sizex)]
```

```
class ScoreParam:
    """The parameters for an alignment scoring function"""
    def __init__(self, gap, match, mismatch):
        self.gap = gap
        self.match = match
        self.mismatch = mismatch
```

Local Alignment Example #1

Score(match) = 10
Score(mismatch) = -5
Score(gap) = -7

Note: this table written top-to-bottom instead of bottom-to-top

Local Alignment Example #2

<pre>local_align("bestoftimes", "soften")</pre>												
	*	b	е	S	t	0	f	t	i	m	е	S
*	0	0	0	0	0	0	0	0	0	0	0	0
S	0	0	0	10	3	0	0	0	0	0	0	10
0	0	0	0	3	5	13	6	0	0	0	0	3
f	0	0	0	0	0	6	23	16	9	2	0	0
t	0	0	0	0	10	3	16	33	26	19	12	5
е	0	0	10	3	3	5	9					
n	0	0	3	5	0	0	2					

Score(match) = 10Score(mismatch) = -5Score(gap) = -7 Note: this table written top-to-bottom instead of bottom-to-top

Local Alignment Example #2

<pre>local_align("bestoftimes", "soften")</pre>												
	*	b	е	S	t	0	f	t	i	m	е	S
*	0	0	0	0	0	0	0	0	0	0	0	0
S	0	0	0	10 🗸	— 3 _~	0	0	0	0	0	0	10
0	0	0	0	3	5	13	6	0	0	0	0	3
f	0	0	0	0	0	6	23	16	9	2	0	0
t	0	0	0	0	10	3	16	33	26	19	12	5
е	0	0	10	3	3	5	9	26	28	21	29	22
n	0	0	3	5	0	0	2	19	21	23	22	24

Score(match) = 10
Score(mismatch) = -5
Score(gap) = -7

Note: this table written top-to-bottom instead of bottom-to-top

More Local Alignment Examples Score(match) = 10 Score(mismatch) = -5 Score(gap) = -7

local_align("catdogfish", "dog")											
	*	С	a	t	d	0	g	f	i	S	h
*	0	0	0	0	0	0	0	0	0	0	0
d	0	0	0	0	10	3	0	0	0	0	0
Ο	0	0	0	0	3	20	13	6	0	0	0
g	0	0	0	0	0	13	30	23	16	9	2

local	_al:	ign("mis	siss	ippi	" " 1	issp	")				
	*	m	i	S	S	i	S	S	i	р	р	i
*	0	0	0	0	0	0	0	0	0	0	0	0
i	0	0	10	3	0	10	3	0	10	3	0	10
S	0	0	3	20	13	6	20	13	6	5	0	3
S	0	0	0	13	30	23	16	30	23	16	9	2
р	0	0	0	6	23	25	18	23	25	33	26	19

local	_al	.ign('	"aaa	a",	"aa")		
	*	a	a	a	a		
*	0	0	0	0	0		
a	0	10	10	10	10		
a	0	10	20	20	20		

Upmost and Downmost Alignments

When there are ties in the max{}, we have a choice about which arrow to follow.

If we prefer arrows higher in the matrix, we get the *upmost* alignment.

If we prefer arrows lower in the matrix, we get the *downmost* alignment.

Local / Global Recap

- Alignment score sometimes called the "edit distance" between two strings.
- Edit distance is sometimes called Levenshtein distance.
- Algorithm for local alignment is sometimes called "Smith-Waterman"
- Algorithm for global alignment is sometimes called "Needleman-Wunsch"
- Same basic algorithm, however.
- Underlies BLAST