
Space-Efficient
Alignment

CMSC 858S

Space Usage

• O(n2) is pretty low space usage, but for a 10 Gb
genome, you’d need a huge amount of memory.

• Can we use less?

• Hirschberg’s algorithm

Remember the meaning of a cell

0 1 2 3 4 5 6 7 8 9 10 11 12

9

8

7

6

5

4

3

2

1

0

0

0

0

0

0

0

0

0

0

0 0 0 0 0 0 0 0 0 0 0 0 0

x

y
C

A

G

T

T

G

C

A

A

A A G G T A T G A A T C

Best alignment
between prefix x[1..5]
and prefix y[1..5]

Linear Space for Alignment Scores

• If you are only interested in the cost or score of an alignment,
you need to use only O(n) space.

• How?

Linear Space for Alignment Scores

• If you are only interested in the cost or score of an alignment,
you need to use only O(n) space.

• How?

0 1 2 3 4 5 6 7 8 9 10 11 12

9

8

7

6

5

4

3

2

1

0

0

0

0

0

0

0

0

0

0

0 0 0 0 0 0 0 0 0 0 0 0 0

When filling in an entry (gray
box) we only look at the
current and previous rows.

Only need to keep those two
rows in memory.

We can do more...

• Given 2 strings X and Y, we can, in linear space and
O(nm) time, compute the cost of aligning...

• every prefix of X with Y

• X with every prefix of Y

• a particular prefix of X with every prefix of Y

• a particular suffix of X with every suffix of Y

• How can we do that?

Best Alignment Between
Prefix of X and Y

0 1 2 3 4 5 6 7 8 9 10 11 12

9

8

7

6

5

4

3

2

1

0

9g

8g

7g

6g

5g

4g

3g

2g

1g

0 1g 2g 3g 4g 5g 6g 7g 8g 9g 10g 11g 12g

x

y
C

A

G

T

T

G

C

A

A

A A G G T A T G A A T C

Score of an optimal alignment
between Y and a prefix of X

Fill in the matrix by columns...

0 1 2 3 4 5 6 7 8 9 10 11 12

9

8

7

6

5

4

3

2

1

0

9g

8g

7g

6g

5g

4g

3g

2g

1g

0 1g 2g 3g 4g 5g 6g 7g 8g 9g 10g 11g 12g

x

y
C

A

G

T

T

G

C

A

A

A A G G T A T G A A T C

What is this
column?

Fill in the matrix by columns...

0 1 2 3 4 5 6 7 8 9 10 11 12

9

8

7

6

5

4

3

2

1

0

9g

8g

7g

6g

5g

4g

3g

2g

1g

0 1g 2g 3g 4g 5g 6g 7g 8g 9g 10g 11g 12g

x

y
C

A

G

T

T

G

C

A

A

A A G G T A T G A A T C

What is this
column?

Best scores
between X and
all prefixes of Y

Fill in the matrix by columns...

0 1 2 3 4 5 6 7 8 9 10 11 12

9

8

7

6

5

4

3

2

1

0

9g

8g

7g

6g

5g

4g

3g

2g

1g

0 1g 2g 3g 4g 5g 6g 7g 8g 9g 10g 11g 12g

x

y
C

A

G

T

T

G

C

A

A

A A G G T A T G A A T C

What is this
column?

Best scores
between X and
all prefixes of Y

Best scores between a prefix of
X and all prefixes of Y

Cost of Alignment Between
X and All Suffixes of Y

131 2 3 4 5 6 7 8 9 10 11 12

9

8

7

6

5

4

3

2

1

10

1g

2g

3g

4g

5g

6g

7g

8g

9g

12g 11g 10g 9g 8g 7g 6g 5g 4g 3g 2g 1g 0

x

y
C

A

G

T

T

G

C

A

A

A A G G T A T G A A T C

Best alignment
between suffix x[10..]
and prefix y[6..]

B[i, j] = min

8
><

>:

cost(xi, yj) + B[i + 1, j + 1]

gap + B[i, j + 1]

gap + B[i + 1, j]

suffix

Cost of Alignment Between
X and All Suffixes of Y

131 2 3 4 5 6 7 8 9 10 11 12

9

8

7

6

5

4

3

2

1

10

1g

2g

3g

4g

5g

6g

7g

8g

9g

12g 11g 10g 9g 8g 7g 6g 5g 4g 3g 2g 1g 0

x

y
C

A

G

T

T

G

C

A

A

A A G G T A T G A A T C

Best alignment
between suffix x[10..]
and prefix y[6..]

B[i, j] = min

8
><

>:

cost(xi, yj) + B[i + 1, j + 1]

gap + B[i, j + 1]

gap + B[i + 1, j]

Exactly the same
reasoning as doing the
“forward” dynamic
programming.

suffix

Cost of Alignment Between
X and All Suffixes of Y

131 2 3 4 5 6 7 8 9 10 11 12

9

8

7

6

5

4

3

2

1

10

1g

2g

3g

4g

5g

6g

7g

8g

9g

12g 11g 10g 9g 8g 7g 6g 5g 4g 3g 2g 1g 0

x

y
C

A

G

T

T

G

C

A

A

A A G G T A T G A A T C

Best alignment
between suffix x[10..]
and prefix y[6..]

B[i, j] = min

8
><

>:

cost(xi, yj) + B[i + 1, j + 1]

gap + B[i, j + 1]

gap + B[i + 1, j]

Exactly the same
reasoning as doing the
“forward” dynamic
programming.

“Backward” dynamic
programming.

suffix

Can We Find the Alignment in
O(n) Space?

• Surprisingly, yes, we can output the optimal alignment
in linear space.

• This will cost us some extra computation but only a
constant factor

• for such a dramatic reduction in space, it’s often worth
it.

• Idea: a divide-and-conquer algorithm to compute half
alignments.

Divide & Conquer

• General algorithmic design technique:

• Split large problem into a few subproblems.

• Recursively solve each subproblem.

• Merge the resulting answers.

• You probably know such algorithms:

• Merge sort

• Quick sort

The Best Path Uses Some Cell in the
Middle Column

0 1 2 3 4 5 6 7 8 9 10 11 12

9

8

7

6

5

4

3

2

1

0

0

0

0

0

0

0

0

0

0

0 0 0 0 0 0 0 0 0 0 0 0 0

x

y
C

A

G

T

T

G

C

A

A

A A G G T A T G A A T C

n/2

bestq = 5

Notation

• AlignValue(x, y) = compute the cost of the best
alignment between x and y in O(min |x|, |y|) space.

• Finding the actual alignment is equivalent to finding all
the cells that the optimal backtrace passes through.

• Call the optimal backtrace the ArrowPath.

First Attempt At Space Efficient Alignment
In the optimal alignment, the first n/2 characters of x are aligned with the first q
characters of y for some q.

12345678
ACGTACTG
A-GT-CTG

x =
y =

q = 3

We don’t know q, so we have to try all possible q.

ArrowPath := []
def Align(x, y):

n := |x|; m := |y|
if n or m ≤ 2: use standard alignment
for q := 0..m:

v1 := AlignValue(x[1..n/2], y[1..q])
v2 := AlignValue(x[n/2+1..n], y[q+1..m])
if v1 + v2 < best: bestq = q; best = v1 + v2

Add (n/2, bestq) to ArrowPath
Align(x[1..n/2], y[1..bestq])
Align(x[n/2+1..n], y[bestq+1..m])

find the q that minimizes
the cost of the alignment

O(n+m) space
O(n+m) space

O(n) or O(m) space

The Best Path Uses Some Cell in the
Middle Column

0 1 2 3 4 5 6 7 8 9 10 11 12

9

8

7

6

5

4

3

2

1

0

0

0

0

0

0

0

0

0

0

0 0 0 0 0 0 0 0 0 0 0 0 0

x

y
C

A

G

T

T

G

C

A

A

A A G G T A T G A A T C
0 1 2 3 4 5 6 7 8 9 10 11 12

9

8

7

6

5

4

3

2

1

0

0

0

0

0

0

0

0

0

0

0 0 0 0 0 0 0 0 0 0 0 0 0

x

y
C

A

G

T

T

G

C

A

A

A A G G T A T G A A T C

Problem
• This works in linear space.

• BUT: not in O(nm) time.

• It’s too expensive to solve all those AlignValue
problems in the for loop.

• Define:
• AllYPrefixCosts(x, i, y) = returns an array of the scores of

optimal alignments between x[1..i] and all prefixes of Y.

• AllYSuffixCosts(x, i, y) = returns an array of the scores of
optimal alignments between x[i..n] and all suffixes of y.

• These are implemented as described in previous slides by returning
the last row or last column of the DP matrix.

Space Efficient Alignment
12345678
ACGTACTG
A-GT-CTG

x =
y =

q = 3
We still try all possible q, but we use the fact that
we can compute the cost between a given prefix
and all suffixes in linear space.

ArrowPath := []

def Align(x, y):
n := |x|; m := |y|
if n or m ≤ 2: use standard alignment

YPrefix := AllYPrefixCosts(x, n/2, y)
YSuffix := AllYSuffixCosts(x, n/2+1, y)

for q := 0..m:
cost = YPrefix[q] + YSuffix[q+1]
if cost < best: bestq = q; best = cost

Add (n/2, bestq) to ArrowPath
Align(x[1..n/2], y[1..bestq])
Align(x[n/2+1..n], y[bestq+1..m])

find the q that minimizes
the cost of the alignment,
using the costs of aligning X
to prefixes and suffixes of Y

O(n+m) space

O(n) or O(m) space

Running Time Recurrence, 1

Full recurrence:

T (n, m) cmn + T (n/2, q) + T (n/2, m� q)

T (n, 2) cn
T (2, m) cm

Align(x[1..n/2], y[1..bestq])

Align(x[n/2+1..n], y[bestq+1..m])

Too complicated because we don’t know what q is.

Simplify: assume both sequences have length n, and that we get a perfect split in
half every time, q=n/2:

T (n) 2T (n/2) + cn2

T (n) = O(n2)
Solves as:

Running Time Recurrence, 2

T (n, m) cmn + T (n/2, q) + T (n/2, m� q)

Guess: T(n,m) ≤ kmn, for some k.

Proof, by induction:

Base cases: If k ≥ c then T(n,2) ≤ cn ≤ c2n ≤ k2n = kmn

Induction step: Assume T(m’, n’) ≤ km’n’ for pairs (m’,n’) with a product smaller
than mn:

T (n, 2) cn
T (2, m) cm

T (m, n) cmn + T (n/2, q) + T (n/2, m� q)
 cmn + kqn/2 + k(m� q)n/2
= cmn + kqn/2 + kmn/2� kqn/2
= (c + k/2)mn

← apply induction hypothesis

k = 2c =) T (m, n) 2cmn = kmn

Recap

• Can compute the cost of an alignment easily in linear
space.

• Can compute the cost of a string with all suffixes of a
second string in linear space.

• Divide and conquer algorithm for computing the actual
alignment (traceback path in the DP matrix) in linear
space.

• Still uses O(nm) time!

