
CMSC 451: Linear Programming

Slides By: Carl Kingsford

Department of Computer Science

University of Maryland, College Park

Linear Programming

Suppose you are given:

• A matrix A with m rows and n columns.

• A vector ~b of length n.

• A vector ~c of length n.

Find a length-n vector ~x such that

A~x ≤ ~b

and so that

~c · ~x :=
n∑

j=1

cjxj

is as large as possible.

Linear Algebra

The matrix inequality:
A~x ≤ ~b

in pictures:

· · · · · · · ·
· · · · · · · ·
· · · · · · · ·
· · · · · · · ·

×

·
·
·
·
·
·
·
·

≤

·
·
·
·

Each row of A gives coefficients of a linear expression:
∑

j aijxj .

Each row of A along with an entry of b specifies a linear inequality:∑
j aijxj ≤ bi .

A little more general

maximize
∑

j

cjxj

subject to A~x ≤ b

What if you want to minimize?

Rewrite to maximize
∑

j(−cj)xj .

What if you want to include a “≥” constraint ~ai · ~x ≥ bi?

Include the constraint −~ai · ~x ≤ −bi instead.

What if you want to include a “=” constraint?

Include both the ≥ and ≤ constraints.

Hence, we can use = and ≥ constraints and maximize if we want.

A little more general

maximize
∑

j

cjxj

subject to A~x ≤ b

What if you want to minimize? Rewrite to maximize
∑

j(−cj)xj .

What if you want to include a “≥” constraint ~ai · ~x ≥ bi?

Include the constraint −~ai · ~x ≤ −bi instead.

What if you want to include a “=” constraint?

Include both the ≥ and ≤ constraints.

Hence, we can use = and ≥ constraints and maximize if we want.

A little more general

maximize
∑

j

cjxj

subject to A~x ≤ b

What if you want to minimize? Rewrite to maximize
∑

j(−cj)xj .

What if you want to include a “≥” constraint ~ai · ~x ≥ bi?
Include the constraint −~ai · ~x ≤ −bi instead.

What if you want to include a “=” constraint?

Include both the ≥ and ≤ constraints.

Hence, we can use = and ≥ constraints and maximize if we want.

A little more general

maximize
∑

j

cjxj

subject to A~x ≤ b

What if you want to minimize? Rewrite to maximize
∑

j(−cj)xj .

What if you want to include a “≥” constraint ~ai · ~x ≥ bi?
Include the constraint −~ai · ~x ≤ −bi instead.

What if you want to include a “=” constraint?
Include both the ≥ and ≤ constraints.

Hence, we can use = and ≥ constraints and maximize if we want.

History of LP Algorithms

The Simplex Method:

• Oldest method.

• Not a polynomial time algorithm: for all proposed variants, there
are examples LPs that take exponential time to solve.

• Still very widely used because it is fast in practice.

The Ellipsoid Method:

• Discovered in the 1970s.

• First polynomial time algorithm for linear programming.

• Horribly slow in practice, and essentially never used.

Interior Point Methods:

• Polynomial.

• Practical.

In Practice?

There is lots of software to solve linear programs:

• CPLEX — commercial, seems to be the undisputed winner.

• GLPK — GNU Linear Programming Solver
(this is what we will use).

• COIN-OR (CLP) — Another open source solver.

• . . .

• NEOS server — http://www-neos.mcs.anl.gov/

Even Microsoft Excel has a built-in LP solver (though may not be
installed by default).

What is Linear Programming
Good For?

Maximum Flow

Maximum Flow

Given a directed graph G = (V , E), capacities c(e) for each edge
e, and two vertices s, t ∈ V , find a flow f in G from s to t of
maximum value.

What does a valid flow f look like?

• 0 ≤ f (e) ≤ c(e) for all e.

•
∑

(u,v)∈E f (u, v) =
∑

(v ,w)∈E f (v , w)

for all v ∈ V except s, t.

Maximum Flow as LP

Create a variable xuv for every edge (u, v) ∈ E . The xuv values will
give the flow: f (u, v) = xuv .

Then we can write the maximum flow problem as a linear program:

maximize
∑

(u,t)∈E

xuv

subject to 0 ≤ xuv ≤ cuv for every (u, v) ∈ E∑
(u,v)∈E

xuv =
∑

(v ,w)∈E

xvw for all v ∈ V \ {s, t}

The first set of constraints ensure the capacity constraints are
obeyed. The second set of constraints enforce flow balance.

Maximum Flow as MathProg

set V; # rep vertices
set E within V cross V; # rep edges
param C {(u,v) in E} >= 0; # capacities
param s in V; # source & sink
param t in V;

var X {(u,v) in E} >= 0, <= C[u,v]; # var for each edge

maximize flow: sum {(u,t) in E} X[u,t];

subject to balance {v in (V setminus {s,t})}:
sum {(u,v) in E} X[u,v] = sum {(v,w) in E} X[v,w];

solve;
printf {(u,v) in E : X[u,v] > 0}: "%s %s %f", u,v,X[u,v];
end;

General MathProg Organization

Declarations

Objective Function

Constraints

Output

Maximum Flow Data

The “model” on the previous slide can work any graph and
capacities.

The “data” file of the MathProg program gives the specific
instance of the problem.

Support your graph was this:

1

2

3

4

5

6 7
3

1

10

7

62

1

4

4

Maximum Flow Data

data;
set V := 1..7;
set E := (1,2) (1,3) (1,4) (2,4) (2,7) (3,5) (4,6)

(4,5) (5,7) (6,7) ;
param C : 1 2 3 4 5 6 7 :=

1 . 3 1 7 . . .
2 . . . 2 . . 6
3 9 . .
4 1 .
5 4
6 4
7 ;

param s := 1;
param t := 7;
end;

Maximum Bipartite Matching

Maximum Bipartite Matching

Given a bipartite graph G = (V , E), choose as
large a subset of edges M ⊆ E as possible that
forms a matching.

The red text gives an objective function.
The blue text gives constraints.

a

b

c

d

e

1

2

3

4

5

L R

People Tasks

Maximum Bipartite Matching

set A;
set B;
set E within A cross B; # a bipartite graph

var X {e in E} >= 0, <= 1; # variable for each edge

maximize numedges: sum {(u,v) in E} X[u,v];

s.t. matchA {u in A}: sum {(u,v) in E} X[u,v] <= 1;
s.t. matchB {v in B}: sum {(u,v) in E} X[u,v] <= 1;
end;

Bipartite Matching Data

data;
set A := a b c d e f;
set B := 1..5;
set E : 1 2 3 4 5 :=

a + + - - -
b - - + + +
c + - + - +
d - + - + -
e - - - - +
f + - + - - ;

end;

Integer Linear Programming

If we add one more kind of constraint, we get an integer linear
program (ILP):

maximize
∑

j

cjxj

subject to A~x ≤ b

xi ∈ {0, 1} for all i = 1, . . . , n←

ILPs seem to be much more powerful and expressive than just LPs.

In particular, solving an ILP is NP-hard and there is no known
polynomial time algorithm (and if P 6=NP, there isn’t one).

However: because of its importance, lots of optimized code and
heuristics are available. CPLEX and GLPK for example provide
solvers for ILPs.

Minimum Vertex Cover

Minimum Vertex Cover

Given graph G = (V , E) choose a subset of vertices C ⊆ V such
that every edge in E is incident to some vertex in C .

Why is this useful?

• In a social network, choose a set of people so that every
possible friendship has a representative.

• On what nodes should you place sensors in an electric network
to make sure you monitor every edge?

Vertex Cover as an ILP

Create a variable xu for every vertex u in V .

We can then model the vertex cover problem as the following
linear program:

minimize
∑
v∈V

xv

subject to xu + xv ≥ 1 for every {u, v} ∈ E

xu ∈ {0, 1} for all u ∈ V

The constraints “xu ∈ {0, 1}” are called integrality constraints.
They require that the variables be either 0 or 1, and they make the
ILP difficult to solve.

Vertex Cover as MathProg

Declarations
set V;
set E within V cross V;
var x {v in V} binary; # integrality constraints.

Objective Function
minimize cover_size: sum { v in V } x[v];

Constraints
subject to covered {(u,v) in E}: x[u] + x[v] >= 1;

solve;

Output
printf "The Vertex Cover:";
printf {u in V : x[u] >= 1}: "%d ", u;
end;

Summary

• Many problems can be modeled as linear programs (LPs).

• If you can write your problem as an LP, you can use existing,
highly optimized solvers to give polynomial time algorithms to
solve them.

• It seems even more problems can be written as integer linear
programs (ILP).

• If you write your problem as an ILP, you won’t have a
polynomial-time algorithm, but you may be able to use
optimized packages to solve it.

	Linear Programming
	What is a linear program?
	How do you find optimal values?
	Maximum Flow
	Maximum Bipartite Matching
	Integer Linear Programming
	Vertex Cover

