More Exact Matching

(Following Gusfield Chapter 2)

Knuth-Morris-Prat \dagger

Knuth-Morris-Pratt (KMP)

- Shift by more than 1 place, if possible, upon mismatch.

Def. $\operatorname{spm}_{i}(P)=$ the length of the longest substring of P that ends at $i>$ 1 and matches a prefix of P and such that $P[i+1] \neq P\left[s p m_{i}+1\right]$. ("spm" stands for suffix, prefix, mismatch.)

KMP Algorithm: Suppose mismatch at $i+1$ of P :

KMP


```
c = p = 1 // ptrs into T and P, respectively
```

while $c \leq|T|-|P|+p:$
while $P[p]=T[c]$ and $p \leq n: / /$ compare P and T
p++
c++
if $\mathrm{p}=\mathrm{n}+1:$ print "Found at", $\mathrm{c}-\mathrm{n}$ // if found
if p = 1: // failure at start means inc c
c++
else:
$p=\operatorname{spm}_{\mathrm{p}-1}+1$ // "shift" by $\mathrm{n}-\operatorname{spm}_{\mathrm{p}-1}($ even if $\mathrm{p}=\mathrm{n}+1)$

KMP Running Time

Pseudocode runs in $\mathrm{O}(|T|)$ time (making at most $2|T|$ comparisons):

- In each iteration of the outer while loop, at most one character is compared that was compared in a previous iteration.
- Total comparisons: $\leq|T|+s$, where $s=$ \# of times through the outer while loop.
- $\quad s \leq|T|$ since P is shifted by ≥ 1 each time.
- Therefore: $\mathrm{O}(|T|)$ for the pseudocode on previous page.

Recall: Fundamental Preprocessing

Def. $Z_{i}(P)=$ the length of the longest substring of P that starts at $i>1$ and matches a prefix of P.

- $P=$ "aardvark": $Z_{2}=1, Z_{6}=1$
- $P=$ "alfalfa": $\mathrm{Z}_{4}=4$
- $P=$ "photophosphorescent": $\mathrm{Z}_{6}=\mathrm{Z}_{10}=3$

Computing spmi for KMP

$f(j)=$ the right end of the Z-box (if any) that starts at j.

$g(i)=\min \{j: f(j)=i\}$ or o if empty set.
Thm. $\mathrm{spm}_{i}=Z_{g(i)}$ if $g(i)>0$ otherwise o
Proof.

$P[g(i) . . i]=P\left[1 . . Z_{g(i)}\right]$ by the definition of Z.
Also, $P(i+1) \neq P\left[Z_{g(i)+1}\right]$, otherwise $Z_{g(i)}$ would be bigger.
So, $s p m_{i} \geq Z_{g(i)}$. But it can't be longer, because otherwise $g(i)$ would be smaller.

Boyer-Moore

Boyer-Moore Main Ideas

- For a given shift, compare P to T from right to left.

thequickbrownfox
 x
 crown

- Two rules for shifting:
(1) Bad Character Rule
(2) Good Suffix Rule

Bad Character Rule

Def. $R_{i}(x)=$ position of the rightmost occurrence of character x before position i.

- When a mismatch occurs at pattern position i :

shift by $i-R_{i}(T[k])$ characters so that the next occurrence of $T[k]$ in the pattern is underneath position k in T.
(Called the "bad character rule" because it fires on a mismatch, but really it shifts so that the next good character matches.)

Computing $\mathrm{Ri}_{\mathrm{i}}(\mathrm{x})$

Def. $R_{i}(x)=$ position of the rightmost occurrence of character x before position i.

- Array $R[i, x]$ would depend on the size of the alphabet, which is undesirable.
- Better to use a collection of lists:
- \quad Occur $[\mathrm{x}]=$ positions where x occurs in P in decreasing order.
- \quad To find $R_{i}(x)$:
- \quad scan down list x until you find first index $<i$
- Time: at most $\mathrm{O}(n-i)$ time, since if mismatch occurred at position i then there can be at most $n-i$ items on the list that are $\geq i$.
- Only call this routine after matching $\mathrm{O}(n-i)$ characters, so at most doubles the running time.

Good Shift Rule

Apply these cases in order:

Shift so that the rightmost occurrence of matched suffix with different preceding character is aligned to matched part of T.

Case (B):

β longest proper prefix of P that matches a suffix of α. Shift so that the prefix β matches the suffix β that was matched to T.

Case (C): If not (A) or (B), shift $|P|$ places.

Processing the good suffix rule

Def. $L(i)=$ largest index such that $P[i . . n]$ matches suffix of $P[1 . . L(i)]$ and $P[i-1] \neq$ the character preceding that suffix (o if no such index exists).

Def. $l(i)=$ size of largest suffix of $P[i . . n]$ that equals some prefix of P (o if none exists).

- Case (A): shift by $n-L(i)$.
- Case (B): if $L(i)=0$: shift by $n-l(i)$ places.
- If match: shift by $n-l(2)$ places.

Computing L(i)

Def. $N_{j}(P)=$ length of longest suffix of $P[1 . . j]$ that is also a suffix of P.

Recall: Def. $Z_{i}(P)=$ the length of the longest substring of P that starts at $i>1$ and matches a prefix of P.

$N_{j}(P)$ and $Z_{i}(P)$ are reverses of each other: $N_{j}(P)=Z_{\mathrm{n}-\mathrm{j}+}\left(P^{P}\right)$, where $P r$ is P reversed. «Can compute in $O(n)$ time using Z-algorithm on Pr.

Computing L(i), continued

- $\quad L(i)=$ largest index j such that $P[i . . n]$ matches suffix of $P[1 . . L(i)]$ and $P[i-1] \neq$ the character preceding that suffix.

- $\quad N_{j}(P)=$ length of longest suffix of $P[1 . j]$ that is also a suffix of P.
$\Rightarrow \quad L(i)=$ largest index j such that $N_{j}(P)=|P[i . . n]|=n-i+1$
- $\quad \mathrm{x} \neq \mathrm{y}$ because otherwise $N_{j}(P)$ would be longer.

```
Compute Nj[P] via Z-Algorithm for all j.
Initialize L[i] = O for all i.
for j = 1 to n - 1:
    i = n - Nj[P] + 1
    L[i] = j
```


Boyer-Moore

```
\(\mathrm{k}=1\)
while \(k<|T|-|P|+1:\)
    Compare \(P\) to \(T[k . .|P|]\) from right to left.
    \(s=\max \{\) bad character rule, good suffix rule, 1 \}
    \(k+=s\)
```

- Worst case running time $=\mathrm{O}(\mathrm{nm})$ since might shift by 1 every time.
- Despite this, Boyer-Moore often the best choice in practice because on real texts the running time is often sublinear (since the heuristics allow skipping a lot of characters).
- Extensions exist that guarantee $\mathrm{O}(|P|+|T|)$ running time.

